18

10008611

Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

17

10005917

Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

16

10001453

Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

15

9999264

Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

14

9998139

Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes

Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermocapillary flow affects inversely the phase boundaries of distinct shapes. The inhomogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.

13

9998258

MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.

12

9997005

Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.

11

8319

Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

This paper analyses the unsteady, two-dimensional
stagnation point flow of an incompressible viscous fluid over a flat
sheet when the flow is started impulsively from rest and at the same
time, the sheet is suddenly stretched in its own plane with a velocity
proportional to the distance from the stagnation point. The partial
differential equations governing the laminar boundary layer forced
convection flow are non-dimensionalised using semi-similar
transformations and then solved numerically using an implicit finitedifference
scheme known as the Keller-box method. Results
pertaining to the flow and heat transfer characteristics are computed
for all dimensionless time, uniformly valid in the whole spatial region
without any numerical difficulties. Analytical solutions are also
obtained for both small and large times, respectively representing the
initial unsteady and final steady state flow and heat transfer.
Numerical results indicate that the velocity ratio parameter is found
to have a significant effect on skin friction and heat transfer rate at
the surface. Furthermore, it is exposed that there is a smooth
transition from the initial unsteady state flow (small time solution) to
the final steady state (large time solution).

10

4936

A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Numerical simulations are performed for laminar
continuous and pulsed jets impinging on a surface in order to
investigate the effects of pulsing frequency on the heat transfer
characteristics. The time-averaged Nusselt number of pulsed jets is
larger in the impinging jet region as compared to the continuous jet,
while it is smaller in the outer wall jet region. At the stagnation point,
the mean and RMS Nusselt numbers become larger and smaller,
respectively, as the pulsing frequency increases. Unsteady behaviors
of vortical fluid motions and temperature field are also investigated to
understand the underlying mechanisms of heat transfer enhancement.

9

4551

Enhancement of Impingement Heat Transfer on a Flat Plate with Ribs

Impinging jets are widely used in industrial cooling
systems for their high heat transfer characteristics at stagnation points.
However, the heat transfer characteristics are low in the downstream
direction. In order to improve the heat transfer coefficient further
downstream, investigations introducing ribs on jet-cooled flat plates
have been conducted. Most studies regarding the heat-transfer
enhancement using a rib-roughened wall have dealt with the rib pitch.
In this paper, we focused on the rib spacing and demonstrated that the
rib spacing must be more than 6 times the nozzle width to improve heat
transfer at Reynolds number Re=5.0×103 because it is necessary to
have enough space to allow reattachment of flow behind the first rib.

8

13446

Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder

Natural convection heat transfer from a heated
horizontal semi-circular cylinder (flat surface upward) has been
investigated for the following ranges of conditions; Grashof number,
and Prandtl number. The governing partial differential equations
(continuity, Navier-Stokes and energy equations) have been solved
numerically using a finite volume formulation. In addition, the role of
the type of the thermal boundary condition imposed at cylinder
surface, namely, constant wall temperature (CWT) and constant heat
flux (CHF) are explored. Natural convection heat transfer from a
heated horizontal semi-circular cylinder (flat surface upward) has
been investigated for the following ranges of conditions; Grashof
number, and Prandtl number, . The governing partial differential
equations (continuity, Navier-Stokes and energy equations) have
been solved numerically using a finite volume formulation. In
addition, the role of the type of the thermal boundary condition
imposed at cylinder surface, namely, constant wall temperature
(CWT) and constant heat flux (CHF) are explored. The resulting flow
and temperature fields are visualized in terms of the streamline and
isotherm patterns in the proximity of the cylinder. The flow remains
attached to the cylinder surface over the range of conditions spanned
here except that for and ; at these conditions, a separated flow
region is observed when the condition of the constant wall
temperature is prescribed on the surface of the cylinder. The heat
transfer characteristics are analyzed in terms of the local and average
Nusselt numbers. The maximum value of the local Nusselt number
always occurs at the corner points whereas it is found to be minimum
at the rear stagnation point on the flat surface. Overall, the average
Nusselt number increases with Grashof number and/ or Prandtl
number in accordance with the scaling considerations. The numerical
results are used to develop simple correlations as functions of
Grashof and Prandtl number thereby enabling the interpolation of the
present numerical results for the intermediate values of the Prandtl or
Grashof numbers for both thermal boundary conditions.

7

7055

Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

This paper considers the effect of heat generation
proportional l to (T - T∞ )p , where T is the local temperature and T∞
is the ambient temperature, in unsteady free convection flow near the
stagnation point region of a three-dimensional body. The fluid is
considered in an ambient fluid under the assumption of a step change
in the surface temperature of the body. The non-linear coupled partial
differential equations governing the free convection flow are solved
numerically using an implicit finite-difference method for different
values of the governing parameters entering these equations. The
results for the flow and heat characteristics when p ≤ 2 show that
the transition from the initial unsteady-state flow to the final steadystate
flow takes place smoothly. The behavior of the flow is seen
strongly depend on the exponent p.

6

1031

Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

The aim of this paper is to study the oblique
stagnation point flow on vertical plate with uniform surface heat flux
in presence of magnetic field. Using Stream function, partial
differential equations corresponding to the momentum and energy
equations are converted into non-linear ordinary differential
equations. Numerical solutions of these equations are obtained using
Runge-Kutta Fehlberg method with the help of shooting technique.
In the present work the effects of striking angle, magnetic field
parameter, Grashoff number, the Prandtl number on velocity and heat
transfer characteristics have been discussed. Effect of above
mentioned parameter on the position of stagnation point are also
studied.

5

10000

Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Hypersonic flows around spatial vehicles during their
reentry phase in planetary atmospheres are characterized by intense
aerothermal phenomena. The aim of this work is to analyze high
temperature flows around an axisymmetric blunt body taking into
account chemical and vibrational non-equilibrium for air mixture
species. For this purpose, a finite volume methodology is employed
to determine the supersonic flow parameters around the axisymmetric
blunt body, especially at the stagnation point and along the wall of
spacecraft for several altitudes. This allows the capture shock wave
before a blunt body placed in supersonic free stream. The numerical
technique uses the Flux Vector Splitting method of Van Leer. Here,
adequate time stepping parameter, along with CFL coefficient and
mesh size level are selected to ensure numerical convergence, sought
with an order of 10-8

4

6626

Homotopy Analysis Method for Hydromagnetic Plane and Axisymmetric Stagnation-point Flow with Velocity Slip

This work is focused on the steady boundary layer flow
near the forward stagnation point of plane and axisymmetric bodies
towards a stretching sheet. The no slip condition on the solid
boundary is replaced by the partial slip condition. The analytical
solutions for the velocity distributions are obtained for the various
values of the ratio of free stream velocity and stretching velocity, slip
parameter, the suction and injection velocity parameter, magnetic
parameter and dimensionality index parameter in the series forms with
the help of homotopy analysis method (HAM). Convergence of the
series is explicitly discussed. Results show that the flow and the skin
friction coefficient depend heavily on the velocity slip factor. In
addition, the effects of all the parameters mentioned above were more
pronounced for plane flows than for axisymmetric flows.

3

13675

Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

2

9275

Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research

Preliminary results for a new flat plate test
facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow
visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the
two-dimensionality of the flow in the location where the
thermal anemometry measurements are obtained.
Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the
wealth of data available on zero pressure gradient Blasius
flows. Results for the skin friction, boundary layer thickness,
frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids
have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is
little dependence of turbulence on the freestream velocity.

1

6250

A Large-Eddy Simulation of Vortex Cell flow with Incoming Turbulent Boundary Layer

We present a Large-Eddy simulation of a vortex cell
with circular shaped. The results show that the flow field can be sub
divided into four important zones, the shear layer above the cavity,
the stagnation zone, the vortex core in the cavity and the boundary
layer along the wall of the cavity. It is shown that the vortex core
consits of solid body rotation without much turbulence activity. The
vortex is mainly driven by high energy packets that are driven into the
cavity from the stagnation point region and by entrainment of fluid
from the cavity into the shear layer. The physics in the boundary
layer along the cavity-s wall seems to be far from that of a canonical
boundary layer which might be a crucial point for modelling this
flow.