33

10010737

MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

In this paper, a non-similraity analysis has been
presented to exhibit the two-dimensional boundary layer flow
of magnetohydrodynamic (MHD) natural convection of tangent
hyperbolic nanofluid nearby a vertical permeable cone in the presence
of variable wall temperature impact. The mutated boundary layer
nonlinear governing equations are solved numerically by the an
efficient implicit finite difference procedure. For both nanofluid
effective viscosity and nanofluid thermal conductivity, a number of
experimental relations have been recognized. For characterizing the
nanofluid, the compatible nanoparticle volume fraction model has
been used. Nusselt number and skin friction coefficient are calculated
for some values of Weissenberg number W, surface temperature
exponent n, magnetic field parameter Mg, power law index m and
Prandtl number Pr as functions of suction parameter. The rate of heat
transfer from a vertical permeable cone in a regular fluid is less than
that in nanofluids. A best convection has been presented by Copper
nanoparticle among all the used nanoparticles.

32

10010644

A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

31

10008777

Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

30

10005285

FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

29

10006037

Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

The magnetohydrodynamic (MHD) Falkner-Skan
equations appear in study of laminar boundary layers flow over
a wedge in presence of a transverse magnetic field. The partial
differential equations of boundary layer problems in presence of
a transverse magnetic field are reduced to MHD Falkner-Skan
equation by similarity solution methods. This is a nonlinear ordinary
differential equation. In this paper, we solve this equation via
spectral collocation method based on Bessel functions of the first
kind. In this approach, we reduce the solution of the nonlinear
MHD Falkner-Skan equation to a solution of a nonlinear algebraic
equations system. Then, the resulting system is solved by Newton
method. We discuss obtained solution by studying the behavior
of boundary layer flow in terms of skin friction, velocity, various
amounts of magnetic field and angle of wedge. Finally, the results
are compared with other methods mentioned in literature. We can
conclude that the presented method has better accuracy than others.

28

10004434

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

27

10003261

Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

This paper investigates the characteristics of wall
pressure fluctuations in naturally developing boundary layer flows
on axisymmetric bodies experimentally. The axisymmetric body has
a modified ellipsoidal blunt nose. Flush-mounted microphones are
used to measure the wall pressure fluctuations in the boundary layer
flow over the body. The measurements are performed in a low noise
wind tunnel. It is found that the correlation between the flow regime
and the characteristics of the pressure fluctuations is distinct. The
process from small fluctuation in laminar flow to large fluctuation in
turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave)
is found to generate and develop in transition. Because of the T-S
wave, the wall pressure fluctuations in the transition region are higher
than those in the turbulent boundary layer.

26

10001260

MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

25

10001145

Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

24

10000561

Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

23

9999264

Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

22

9999275

Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

21

9998473

MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

20

9998108

Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies

Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.

19

9998253

Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

18

9998258

MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.

17

9997933

Thermophoresis Particle Precipitate on Heated Surfaces

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

16

13511

Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate

A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.

15

9899

Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

The boundary layer flow and heat transfer on a
stretched surface moving with prescribed skin friction is studied for
permeable surface. The surface temperature is assumed to vary
inversely with the vertical direction x for n = -1. The skin friction at
the surface scales as (x-1/2) at m = 0. The constants m and n are the
indices of the power law velocity and temperature exponent
respectively. Similarity solutions are obtained for the boundary layer
equations subject to power law temperature and velocity variation.
The effect of various governing parameters, such as the buoyancy
parameter λ and the suction/injection parameter fw for air (Pr = 0.72)
are studied. The choice of n and m ensures that the used similarity
solutions are x independent. The results show that, assisting flow (λ >
0) enhancing the heat transfer coefficient along the surface for any
constant value of fw. Furthermore, injection increases the heat
transfer coefficient but suction reduces it at constant λ.

14

3791

Thermophoretic Deposition of Nanoparticles Due Toa Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion, and Diffusion-Thermo

The present contribution deals with the
thermophoretic deposition of nanoparticles over a rapidly rotating
permeable disk in the presence of partial slip, magnetic field, thermal
radiation, thermal-diffusion, and diffusion-thermo effects. The
governing nonlinear partial differential equations such as continuity,
momentum, energy and concentration are transformed into nonlinear
ordinary differential equations using similarity analysis, and the
solutions are obtained through the very efficient computer algebra
software MATLAB. Graphical results for non-dimensional
concentration and temperature profiles including thermophoretic
deposition velocity and Stanton number (thermophoretic deposition
flux) in tabular forms are presented for a range of values of the
parameters characterizing the flow field. It is observed that slip
mechanism, thermal-diffusion, diffusion-thermo, magnetic field and
radiation significantly control the thermophoretic particles deposition
rate. The obtained results may be useful to many industrial and
engineering applications.

13

17407

Genetic Algorithm Approach for Solving the Falkner–Skan Equation

A novel method based on Genetic Algorithm to solve the boundary value problems (BVPs) of the Falkner–Skan equation over a semi-infinite interval has been presented. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method based on Genetic Algorithm to transform the BVP into initial value problems (IVPs). Genetic Algorithm is used to calculate shooting angle. The initial value problems arisen during shooting are computed by Runge-Kutta Fehlberg method. The numerical solutions obtained by the present method are in agreement with those obtained by previous authors.

12

13549

Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid

The steady mixed convection boundary layer flow from
a vertical cone in a porous medium filled with a nanofluid is
numerically investigated using different types of nanoparticles as Cu
(copper), Al2O3 (alumina) and TiO2 (titania). The boundary value
problem is solved by using the shooting technique by reducing it
into an ordinary differential equation. Results of interest for the local
Nusselt number with various values of the constant mixed convection
parameter and nanoparticle volume fraction parameter are evaluated.
It is found that dual solutions exist for a certain range of mixed
convection parameter.

11

10783

Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

In the present analysis an unsteady laminar
forced convection water boundary layer flow is considered.
The fluid properties such as viscosity and Prandtl number are
taken as variables such that those are inversely proportional to
temperature. By using quasi-linearization technique the nonlinear
coupled partial differential equations are linearized and
the numerical solutions are obtained by using implicit finite
difference scheme with the appropriate selection of step sizes.
Non-similar solutions have been obtained from the starting
point of the stream-wise coordinate to the point where skin
friction value vanishes. The effect non-uniform mass transfer
along the surface of the cylinder through slot is studied on the
skin friction and heat transfer coefficients.

10

3537

Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

A steady two-dimensional magnetohydrodynamics
flow and heat transfer over a stretching vertical sheet influenced by
radiation and porosity is studied. The governing boundary layer
equations of partial differential equations are reduced to a system of
ordinary differential equations using similarity transformation. The
system is solved numerically by using a finite difference scheme
known as the Keller-box method for some values of parameters,
namely the radiation parameter N, magnetic parameter M, buoyancy
parameter l , Prandtl number Pr and permeability parameter K. The
effects of the parameters on the heat transfer characteristics are
analyzed and discussed. It is found that both the skin friction
coefficient and the local Nusselt number decrease as the magnetic
parameter M and permeability parameter K increase. Heat transfer
rate at the surface decreases as the radiation parameter increases.

9

10567

MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

This paper examines the forced convection flow of
incompressible, electrically conducting viscous fluid past a sharp
wedge in the presence of heat generation or absorption with an
applied magnetic field. The system of partial differential equations
governing Falkner - Skan wedge flow and heat transfer is first
transformed into a system of ordinary differential equations using
similarity transformations which is later solved using an implicit
finite - difference scheme, along with quasilinearization technique.
Numerical computations are performed for air (Pr = 0.7) and
displayed graphically to illustrate the influence of pertinent physical
parameters on local skin friction and heat transfer coefficients and,
also on, velocity and temperature fields. It is observed that the
magnetic field increases both the coefficients of skin friction and heat
transfer. The effect of heat generation or absorption is found to be
very significant on heat transfer, but its effect on the skin friction is
negligible. Indeed, the occurrence of overshoot is noticed in the
temperature profiles during heat generation process, causing the
reversal in the direction of heat transfer.

8

728

Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

The present paper considers the steady free convection
boundary layer flow of a viscoelastic fluid on solid sphere with
Newtonian heating. The boundary layer equations are an order higher
than those for the Newtonian (viscous) fluid and the adherence
boundary conditions are insufficient to determine the solution of
these equations completely. Thus, the augmentation an extra
boundary condition is needed to perform the numerical
computational. The governing boundary layer equations are first
transformed into non-dimensional form by using special
dimensionless group and then solved by using an implicit finite
difference scheme. The results are displayed graphically to illustrate
the influence of viscoelastic K and Prandtl Number Pr parameters on
skin friction, heat transfer, velocity profiles and temperature profiles.
Present results are compared with the published papers and are found
to concur very well.

7

15814

Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection

The steady coupled dissipative layers, called
Marangoni mixed convection boundary layers, in the presence of a
magnetic field and solute concentration that are formed along the
surface of two immiscible fluids with uniform suction or injection
effects is examined. The similarity boundary layer equations are
solved numerically using the Runge-Kutta Fehlberg with shooting
technique. The Marangoni, buoyancy and external pressure gradient
effects that are generated in mixed convection boundary layer flow
are assessed. The velocity, temperature and concentration boundary
layers thickness decrease with the increase of the magnetic field
strength and the injection to suction. For buoyancy-opposed flow, the
Marangoni mixed convection parameter enhances the velocity
boundary layer but decreases the temperature and concentration
boundary layers. However, for the buoyancy-assisted flow, the
Marangoni mixed convection parameter decelerates the velocity but
increases the temperature and concentration boundary layers.

6

4539

Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation

The present paper considers the steady free
convection boundary layer flow of a viscoelastics fluid with constant
temperature in the presence of heat generation. The boundary layer
equations are an order higher than those for the Newtonian (viscous)
fluid and the adherence boundary conditions are insufficient to
determine the solution of these equations completely. The governing
boundary layer equations are first transformed into non-dimensional
form by using special dimensionless group. Computations are
performed numerically by using Keller-box method by augmenting
an extra boundary condition at infinity and the results are displayed
graphically to illustrate the influence of viscoelastic K, heat
generation γ , and Prandtl Number, Pr parameters on the velocity
and temperature profiles. The results of the surface shear stress in
terms of the local skin friction and the surface rate of heat transfer in
terms of the local Nusselt number for a selection of the heat
generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and
presented in both tabular and graphical formats. Without effect of the
internal heat generation inside the fluid domain for which we take
γ = 0.0, the present numerical results show an excellent agreement
with previous publication.

5

7055

Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

This paper considers the effect of heat generation
proportional l to (T - T∞ )p , where T is the local temperature and T∞
is the ambient temperature, in unsteady free convection flow near the
stagnation point region of a three-dimensional body. The fluid is
considered in an ambient fluid under the assumption of a step change
in the surface temperature of the body. The non-linear coupled partial
differential equations governing the free convection flow are solved
numerically using an implicit finite-difference method for different
values of the governing parameters entering these equations. The
results for the flow and heat characteristics when p ≤ 2 show that
the transition from the initial unsteady-state flow to the final steadystate
flow takes place smoothly. The behavior of the flow is seen
strongly depend on the exponent p.

4

668

Water Boundary Layer Flow Over Rotating Sphere with Mass Transfer

An analysis is performed to study the influence of nonuniform double slot suction on a steady laminar boundary layer flow over a rotating sphere when fluid properties such as viscosity and Prandtl number are inverse linear functions of temperature. Nonsimilar solutions have been obtained from the starting point of the streamwise co-ordinate to the exact point of separation. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation have been overcome by applying an implicit finite difference scheme in combination with the quasi-linearization technique and an appropriate selection of the finer step sizes along the stream-wise direction. The present investigation shows that the point of ordinary separation can be delayed by nonuniform double slot suction if the mass transfer rate is increased and also if the slots are positioned further downstream. In addition, the investigation reveals that double slot suction is found to be more effective compared to a single slot suction in delaying ordinary separation. As rotation parameter increase the point of separation moves upstream direction.