8

10011045

Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

A numerical approach of the effectiveness of numerous
parameters on magnetohydrodynamic (MHD) natural convection
heat and mass transfer problem of a dusty micropolar fluid in
a non-Darcy porous regime is prepared in the current paper.
In addition, a convective boundary condition is scrutinized into
the micropolar dusty fluid model. The governing boundary layer
equations are converted utilizing similarity transformations to a
system of dimensionless equations to be convenient for numerical
treatment. The resulting equations for fluid phase and dust phases
of momentum, angular momentum, energy, and concentration with
the appropriate boundary conditions are solved numerically applying
the Runge-Kutta method of fourth-order. In accordance with the
numerical study, it is obtained that the magnitude of the velocity
of both fluid phase and particle phase reduces with an increasing
magnetic parameter, the mass concentration of the dust particles, and
Forchheimer number. While rises due to an increment in convective
parameter and Darcy number. Also, the results refer that high values
of the magnetic parameter, convective parameter, and Forchheimer
number support the temperature distributions. However, deterioration
occurs as the mass concentration of the dust particles and Darcy
number increases. The angular velocity behavior is described by
progress when studying the effect of the magnetic parameter and
microrotation parameter.

7

10010737

MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

In this paper, a non-similraity analysis has been
presented to exhibit the two-dimensional boundary layer flow
of magnetohydrodynamic (MHD) natural convection of tangent
hyperbolic nanofluid nearby a vertical permeable cone in the presence
of variable wall temperature impact. The mutated boundary layer
nonlinear governing equations are solved numerically by the an
efficient implicit finite difference procedure. For both nanofluid
effective viscosity and nanofluid thermal conductivity, a number of
experimental relations have been recognized. For characterizing the
nanofluid, the compatible nanoparticle volume fraction model has
been used. Nusselt number and skin friction coefficient are calculated
for some values of Weissenberg number W, surface temperature
exponent n, magnetic field parameter Mg, power law index m and
Prandtl number Pr as functions of suction parameter. The rate of heat
transfer from a vertical permeable cone in a regular fluid is less than
that in nanofluids. A best convection has been presented by Copper
nanoparticle among all the used nanoparticles.

6

10010510

Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

5

10010535

Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption

In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.

4

10008777

Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

3

10006037

Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

The magnetohydrodynamic (MHD) Falkner-Skan
equations appear in study of laminar boundary layers flow over
a wedge in presence of a transverse magnetic field. The partial
differential equations of boundary layer problems in presence of
a transverse magnetic field are reduced to MHD Falkner-Skan
equation by similarity solution methods. This is a nonlinear ordinary
differential equation. In this paper, we solve this equation via
spectral collocation method based on Bessel functions of the first
kind. In this approach, we reduce the solution of the nonlinear
MHD Falkner-Skan equation to a solution of a nonlinear algebraic
equations system. Then, the resulting system is solved by Newton
method. We discuss obtained solution by studying the behavior
of boundary layer flow in terms of skin friction, velocity, various
amounts of magnetic field and angle of wedge. Finally, the results
are compared with other methods mentioned in literature. We can
conclude that the presented method has better accuracy than others.

2

10001162

Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

The objective of this work is to study the effect of two key factors - external magnetic field and applied current density during template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

1

9998258

MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.