3

10008633

Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

2

10006658

Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

1

10006432

Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Model updating method has received increasing
attention in damage detection structures based on measured modal
parameters. Therefore, a probability-based damage detection
(PBDD) procedure based on a model updating procedure is
presented in this paper, in which a one-stage model-based damage
identification technique based on the dynamic features of a structure
is investigated. The presented framework uses a finite element
updating method with a Monte Carlo simulation that considers the
uncertainty caused by measurement noise. Enhanced ideal gas
molecular movement (EIGMM) is used as the main algorithm for
model updating. Ideal gas molecular movement (IGMM) is a multiagent
algorithm based on the ideal gas molecular movement. Ideal
gas molecules disperse rapidly in different directions and cover all
the space inside. This is embedded in the high speed of molecules,
collisions between them and with the surrounding barriers. In IGMM
algorithm to accomplish the optimal solutions, the initial population
of gas molecules is randomly generated and the governing equations
related to the velocity of gas molecules and collisions between those
are utilized. In this paper, an enhanced version of IGMM, which
removes unchanged variables after specified iterations, is developed.
The proposed method is implemented on two numerical examples in
the field of structural damage detection. The results show that the
proposed method can perform well and competitive in PBDD of
structures.