International Science Index
39
10010373
Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Abstract: The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.
38
10010429
Feasibility Study of Friction Stir Welding Application for Kevlar Material
Abstract: Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.
37
10009422
Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source
Abstract: The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.
36
10009124
Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves
Abstract: Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.
35
10009113
Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres
Abstract: Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.
34
10008860
Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders
Abstract: Due to the numerous advantages of steel corrugated
web girders, its application field is growing for bridges as well as for
buildings. The global stability behavior of such girders is
significantly larger than those of conventional I-girders with flat web,
thus the application of the structural steel material can be
significantly reduced. Design codes and specifications do not provide
clear and complete rules or recommendations for the determination of
the lateral torsional buckling (LTB) resistance of corrugated web
girders. Therefore, the authors made a thorough investigation
regarding the LTB resistance of the corrugated web girders. Finite
element (FE) simulations have been performed to develop new
design formulas for the determination of the LTB resistance of
trapezoidally corrugated web girders. FE model is developed
considering geometrical and material nonlinear analysis using
equivalent geometric imperfections (GMNI analysis). The equivalent
geometric imperfections involve the initial geometric imperfections
and residual stresses coming from rolling, welding and flame cutting.
Imperfection sensitivity analysis was performed to determine the
necessary magnitudes regarding only the first eigenmodes shape
imperfections. By the help of the validated FE model, an extended
parametric study is carried out to investigate the LTB resistance for
different trapezoidal corrugation profiles. First, the critical moment of
a specific girder was calculated by FE model. The critical moments
from the FE calculations are compared to the previous analytical
calculation proposals. Then, nonlinear analysis was carried out to
determine the ultimate resistance. Due to the numerical
investigations, new proposals are developed for the determination of
the LTB resistance of trapezoidally corrugated web girders through a
modification factor on the design method related to the conventional
flat web girders.
33
10008129
Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates
Abstract: GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.
32
10008131
Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations
Abstract: To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.
31
10008587
Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails
Abstract: In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.
30
10005653
The Relationship between Fatigue Crack Growth and Residual Stress in Rails
Abstract: Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze.
29
10004603
Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Abstract: In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.
28
10003972
Study on Energy Absorption Characteristic of Cab Frame with FEM
Abstract: Cab’s frame strength is considered as an important factor in excavator’s operator safety, especially during roll-over. In this study, we use a model of cab frame with different thicknesses and perform elastoplastic numerical analysis by using Finite Element Method (FEM). Deformation mode and energy absorption's of cab’s frame part are investigated on two conditions, with wrinkle and without wrinkle. The occurrence of wrinkle when deforming cab frame can reduce energy absorption, and among 4 parts with wrinkle, the energy absorption significantly decreases in part C. Residual stress that generated upon the bending process of part C is analyzed to confirm it possibility in increasing the energy absorption.
27
10003423
Evaluation of Residual Stresses in Human Face as a Function of Growth
Abstract: Growth and remodeling of biological structures have
gained lots of attention over the past decades. Determining the
response of living tissues to mechanical loads is necessary for a wide
range of developing fields such as prosthetics design or computerassisted
surgical interventions. It is a well-known fact that biological
structures are never stress-free, even when externally unloaded. The
exact origin of these residual stresses is not clear, but theoretically,
growth is one of the main sources. Extracting body organ’s shapes
from medical imaging does not produce any information regarding
the existing residual stresses in that organ. The simplest cause of such
stresses is gravity since an organ grows under its influence from
birth. Ignoring such residual stresses might cause erroneous results in
numerical simulations. Accounting for residual stresses due to tissue
growth can improve the accuracy of mechanical analysis results. This
paper presents an original computational framework based on gradual
growth to determine the residual stresses due to growth. To illustrate
the method, we apply it to a finite element model of a healthy human
face reconstructed from medical images. The distribution of residual
stress in facial tissues is computed, which can overcome the effect of
gravity and maintain tissues firmness. Our assumption is that tissue
wrinkles caused by aging could be a consequence of decreasing
residual stress and thus not counteracting gravity. Taking into
account these stresses seems therefore extremely important in
maxillofacial surgery. It would indeed help surgeons to estimate
tissues changes after surgery.
26
10002876
The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process
Abstract: The wider growing Finite Element Method (FEM)
application is caused by its benefits of cost saving and environment
friendly. Also, by using FEM a deep understanding of certain
phenomenon can be achieved. This paper observed the role of
material properties and volumetric change when Solid State Phase
Transformation (SSPT) takes place in residual stress formation due to
a welding process of ferritic steels through coupled Thermo-
Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by
experiment. From parametric study of the FEM model, it can be
concluded that the material properties change tend to over-predicts
residual stress in the weld center whilst volumetric change tend to
underestimates it. The best final result is the compromise of both by
incorporates them in the model which has a better result compared to
a model without SSPT.
25
10002147
Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids
Abstract: Spacer grid assembly supporting the nuclear fuel rods
is an important concern in the design of structural components of a
Pressurized Water Reactor (PWR). The spacer grid is composed by
springs and dimples which are formed from a strip sheet by means of
blanking and stamping processes. In this paper, the blanking process
and tooling parameters are evaluated by means of a 2D plane-strain
finite element model in order to evaluate the punch load and quality
of the sheared edges of Inconel 718 strips used for nuclear spacer
grids. A 3D finite element model is also proposed to predict the
tooling loads resulting from the stamping process of a preformed
Inconel 718 strip and to analyse the residual stress effects upon the
spring and dimple design geometries of a nuclear spacer grid.
24
10006070
Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis
Abstract: In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.
23
10001818
Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure
Abstract: Riveting process is one of the important ways to keep
fastening the lap joints in aircraft structures. Failure of aircraft lap
joints directly depends on the stress field in the joint. An important
application of riveting process is in the construction of aircraft
fuselage structures. In this paper, a 3D finite element method is
carried out in order to optimize residual stress field in a riveted lap
joint and also to estimate its fatigue life. In continue, a number of
experiments are designed and analyzed using design of experiments
(DOE). Then, Taguchi method is used to select an optimized case
between different levels of each factor. Besides that, the factor which
affects the most on residual stress field is investigated. Such
optimized case provides the maximum residual stress field. Fatigue
life of the optimized joint is estimated by Paris-Erdogan law. Stress
intensity factors (SIFs) are calculated using both finite element
analysis and experimental formula. In addition, the effect of residual
stress field, geometry and secondary bending are considered in SIF
calculation. A good agreement is found between results of such
methods. Comparison between optimized fatigue life and fatigue life
of other joints has shown an improvement in the joint’s life.
22
10000805
Bi-axial Stress Effects on Barkhausen-Noise
Abstract: Mechanical stress has a strong effect on the magnitude
of the Barkhausen-noise in structural steels. Because the
measurements are performed at the surface of the material, for a
sample sheet, the full effect can be described by a biaxial stress field.
The measured Barkhausen-noise is dependent on the orientation of
the exciting magnetic field relative to the axis of the stress tensor.
The sample inhomogenities including the residual stress also
modifies the angular dependence of the measured Barkhausen-noise.
We have developed a laboratory device with a cross like specimen
for bi-axial bending. The measuring head allowed performing
excitations in two orthogonal directions. We could excite the two
directions independently or simultaneously with different amplitudes.
The simultaneous excitation of the two coils could be performed in
phase or with a 90 degree phase shift. In principle this allows to
measure the Barkhausen-noise at an arbitrary direction without
moving the head, or to measure the Barkhausen-noise induced by a
rotating magnetic field if a linear superposition of the two fields can
be assumed.
21
10000014
The Interaction between Hydrogen and Surface Stress in Stainless Steel
Abstract: This paper reveals the interaction between hydrogen
and surface stress in austenitic stainless steel by X-ray diffraction
stress measurement and thermal desorption analysis before and after
being charged with hydrogen. The surface residual stress was varied
by surface finishing using several disc polishing agents. The obtained
results show that the residual stress near surface had a significant
effect on hydrogen absorption behavior, that is, tensile residual stress
promoted the hydrogen absorption and compressive one did opposite.
Also, hydrogen induced equi-biaxial stress and this stress has a linear
correlation with hydrogen content.
20
9998817
Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12
Abstract: Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and micro hardness) with different USP process parameters were measured. The research proposes that radius of curvature of shot peened sheet increases with time and electric current decreasing, while increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical micro hardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.
19
9998477
Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model
Abstract: In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.
18
9997635
Residual Stress in Ground WC-Co Coatings
Abstract: High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.
17
9997851
Development of Material Analyzing Software Using X-Ray Diffraction
Abstract: X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.
16
1677
Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials
Abstract: Vickers indentation is used to measure the hardness
of materials. In this study, numerical simulation of Vickers
indentation experiment was performed for Diamond like Carbon
(DLC) coated materials. DLC coatings were deposited on stainless
steel 304 substrates with Chromium buffer layer using RF Magnetron
and T-shape Filtered Cathodic Vacuum Arc Dual system The
objective of this research is to understand the elastic plastic
properties, stress strain distribution, ring and lateral crack growth and
propagation, penetration depth of indenter and delamination of
coating from substrate with effect of buffer layer thickness. The
effect of Poisson-s ratio of DLC coating was also analyzed. Indenter
penetration is more in coated materials with thin buffer layer as
compared to thicker one, under same conditions. Similarly, the
specimens with thinner buffer layer failed quickly due to high
residual stress as compared to the coated materials with reasonable
thickness of 200nm buffer layer. The simulation results suggested the
optimized thickness of 200 nm among the prepared specimens for
durable and long service.
15
13707
Fatigue Crack Initiation and Propagation through Residual Stress Field
Abstract: In this paper fatigue crack initiation and propagation in notched plate under constant amplitude loading through tensile residual stress field of 2024 T351 Al-alloy plate were investigated. Residual stress field was generated by plastic deformation using finite element method (FEM) where isotropic hardening in Von Mises model was applied. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses at notch (hole) reduces considerably the total fatigue life. It was shown that the decreasing in stress reduces the fatigue crack growth rates.
14
11672
Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results
Abstract: The plastic forming process of sheet plate takes an
important place in forming metals. The traditional techniques of tool
design for sheet forming operations used in industry are experimental
and expensive methods. Prediction of the forming results,
determination of the punching force, blank holder forces and the
thickness distribution of the sheet metal will decrease the production
cost and time of the material to be formed. In this paper, multi-stage
deep drawing simulation of an Industrial Part has been presented
with finite element method. The entire production steps with
additional operations such as intermediate annealing and springback
has been simulated by ABAQUS software under axisymmetric
conditions. The simulation results such as sheet thickness
distribution, Punch force and residual stresses have been extracted in
any stages and sheet thickness distribution was compared with
experimental results. It was found through comparison of results, the
FE model have proven to be in close agreement with those of
experiment.
13
12154
Analysis of Residual Strain and Stress Distributions in High Speed Milled Specimens using an Indentation Method
Abstract: Through a proper analysis of residual strain and stress
distributions obtained at the surface of high speed milled specimens
of AA 6082–T6 aluminium alloy, the performance of an improved
indentation method is evaluated. This method integrates a special
device of indentation to a universal measuring machine. The
mentioned device allows introducing elongated indents allowing to
diminish the absolute error of measurement. It must be noted that the
present method offers the great advantage of avoiding both the
specific equipment and highly qualified personnel, and their inherent
high costs. In this work, the cutting tool geometry and high speed
parameters are selected to introduce reduced plastic damage.
Through the variation of the depth of cut, the stability of the shapes
adopted by the residual strain and stress distributions is evaluated.
The results show that the strain and stress distributions remain
unchanged, compressive and small. Moreover, these distributions
reveal a similar asymmetry when the gradients corresponding to
conventional and climb cutting zones are compared.
12
9665
Residual Stresses in Thermally Sprayed Gas Turbine Components
Abstract: In this paper, the residual stress of thermal spray
coatings in gas turbine component by curvature method has been
studied. The samples and shaft were coated by hard WC-12Co
cermets using high velocity oxy fuel (HVOF) after preparation in
same conditions. The curvature of coated samples was measured by
using of coordinate measurement machine (CMM). The metallurgical
and Tribological studies has been made on the coated shaft using
optical microscopy and scanning electron microscopy (SEM)
11
4311
Bond Strength in Thermally Sprayed Gas Turbine Shafts
Abstract: In this paper, the bond strength of thermal spray
coatings in high speed shafts has been studied. The metallurgical and
mechanical studies has been made on the coated samples and shaft
using optical microscopy, scanning electron microscopy (SEM).
10
11791
Development Trend in Investigation of Residual Stresses in WC-Co Coating by HVOF Thermal Spraying
Abstract: In this paper, the techniques for estimating the
residual stress in high velocity oxy fuel thermal spray coatings have
been discussed and compared. The development trend and the last
investigation have been studied. It is seemed that the there is not
effective study on the effect of the peening action in HVOF
analytically and numerically.