International Science Index
1022
10011887
Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Abstract: Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.
1021
10011850
Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Abstract: Fuel consumption (FC) is one of the key factors in
determining expenses of operating a heavy-duty vehicle. A customer
may therefore request an estimate of the FC of a desired vehicle.
The modular design of heavy-duty vehicles allows their construction
by specifying the building blocks, such as gear box, engine and
chassis type. If the combination of building blocks is unprecedented,
it is unfeasible to measure the FC, since this would first r equire the
construction of the vehicle. This paper proposes a machine learning
approach to predict FC. This study uses around 40,000 vehicles
specific and o perational e nvironmental c onditions i nformation, such
as road slopes and driver profiles. A ll v ehicles h ave d iesel engines
and a mileage of more than 20,000 km. The data is used to investigate
the accuracy of machine learning algorithms Linear regression (LR),
K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in
predicting fuel consumption for heavy-duty vehicles. Performance of
the algorithms is evaluated by reporting the prediction error on both
simulated data and operational measurements. The performance of the
algorithms is compared using nested cross-validation and statistical
hypothesis testing. The statistical evaluation procedure finds that
ANNs have the lowest prediction error compared to LR and KNN
in estimating fuel consumption on both simulated and operational
data. The models have a mean relative prediction error of 0.3% on
simulated data, and 4.2% on operational data.
1020
10011861
An Artificial Neural Network Model Based Study of Seismic Wave
Abstract: A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.
1019
10011862
Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Abstract: The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.
1018
10011865
A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Abstract: Inspired by the recent movement of digital currency,
we are building a question answering system concerning the subject
of cryptocurrency using Bidirectional Encoder Representations from
Transformers (BERT). The motivation behind this work is to
properly assist digital currency investors by directing them to
the corresponding knowledge bases that can offer them help and
increase the querying speed. BERT, one of newest language models
in natural language processing, was investigated to improve the
quality of generated responses. We studied different combinations of
hyperparameters of the BERT model to obtain the best fit responses.
Further, we created an intelligent chatbot for cryptocurrency using
BERT. A chatbot using BERT shows great potential for the further
advancement of a cryptocurrency market tool. We show that the
BERT neural networks generalize well to other tasks by applying
it successfully to cryptocurrency.
1017
10011871
Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Abstract: The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
1016
10011872
Application of GA Optimization in Analysis of Variable Stiffness Composites
Abstract: Variable angle tow describes the fibres which are
curvilinearly steered in a composite lamina. Significantly, stiffness
tailoring freedom of VAT composite laminate can be enlarged and
enabled. Composite structures with curvilinear fibres have been
shown to improve the buckling load carrying capability in contrast
with the straight laminate composites. However, the optimal design
and analysis of VAT are faced with high computational efforts
due to the increasing number of variables. In this article, an
efficient optimum solution has been used in combination with 1D
Carrera’s Unified Formulation (CUF) to investigate the optimum fibre
orientation angles for buckling analysis. The particular emphasis is
on the LE-based CUF models, which provide a Lagrange Expansions
to address a layerwise description of the problem unknowns.
The first critical buckling load has been considered under simply
supported boundary conditions. Special attention is lead to the
sensitivity of buckling load corresponding to the fibre orientation
angle in comparison with the results which obtain through the
Genetic Algorithm (GA) optimization frame and then Artificial
Neural Network (ANN) is applied to investigate the accuracy of
the optimized model. As a result, numerical CUF approach with
an optimal solution demonstrates the robustness and computational
efficiency of proposed optimum methodology.
1015
10011881
An Application for Risk of Crime Prediction Using Machine Learning
Abstract: The increase of the world population, especially in
large urban centers, has resulted in new challenges particularly
with the control and optimization of public safety. Thus, in the
present work, a solution is proposed for the prediction of criminal
occurrences in a city based on historical data of incidents and
demographic information. The entire research and implementation
will be presented start with the data collection from its original
source, the treatment and transformations applied to them, choice and
the evaluation and implementation of the Machine Learning model up
to the application layer. Classification models will be implemented to
predict criminal risk for a given time interval and location. Machine
Learning algorithms such as Random Forest, Neural Networks,
K-Nearest Neighbors and Logistic Regression will be used to predict
occurrences, and their performance will be compared according
to the data processing and transformation used. The results show
that the use of Machine Learning techniques helps to anticipate
criminal occurrences, which contributed to the reinforcement of
public security. Finally, the models were implemented on a platform
that will provide an API to enable other entities to make requests for
predictions in real-time. An application will also be presented where
it is possible to show criminal predictions visually.
1014
10011740
Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Abstract: The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
1013
10011791
Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Abstract: Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
1012
10011630
A Survey of Sentiment Analysis Based on Deep Learning
Abstract: Sentiment analysis is a very active research topic.
Every day, Facebook, Twitter, Weibo, and other social media,
as well as significant e-commerce websites, generate a massive
amount of comments, which can be used to analyse peoples
opinions or emotions. The existing methods for sentiment analysis
are based mainly on sentiment dictionaries, machine learning, and
deep learning. The first two kinds of methods rely on heavily
sentiment dictionaries or large amounts of labelled data. The third
one overcomes these two problems. So, in this paper, we focus
on the third one. Specifically, we survey various sentiment analysis
methods based on convolutional neural network, recurrent neural
network, long short-term memory, deep neural network, deep belief
network, and memory network. We compare their futures, advantages,
and disadvantages. Also, we point out the main problems of
these methods, which may be worthy of careful studies in the
future. Finally, we also examine the application of deep learning in
multimodal sentiment analysis and aspect-level sentiment analysis.
1011
10011653
On Dialogue Systems Based on Deep Learning
Abstract: Nowadays, dialogue systems increasingly become the
way for humans to access many computer systems. So, humans
can interact with computers in natural language. A dialogue
system consists of three parts: understanding what humans say in
natural language, managing dialogue, and generating responses in
natural language. In this paper, we survey deep learning based
methods for dialogue management, response generation and dialogue
evaluation. Specifically, these methods are based on neural network,
long short-term memory network, deep reinforcement learning,
pre-training and generative adversarial network. We compare these
methods and point out the further research directions.
1010
10011686
A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Abstract: With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.
1009
10011557
A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li,
Peng Gao,
Chao-Jung Huang,
Shiying Hao,
Xuefeng B. Ling,
Yongxia Han,
Yaqi Zhang,
Le Zheng,
Chengyin Ye,
Modi Liu,
Minjie Xia,
Changlin Fu,
Bo Jin,
Karl G. Sylvester,
Eric Widen
Abstract: Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
1008
10011571
Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Abstract: Telecommunication service providers demand accurate
and precise prediction of customer churn probabilities to increase the
effectiveness of their customer relation services. The large amount of
customer data owned by the service providers is suitable for analysis
by machine learning methods. In this study, expenditure data of
customers are analyzed by using an artificial neural network (ANN).
The ANN model is applied to the data of customers with different
billing duration. The proposed model successfully predicts the churn
probabilities at 83% accuracy for only three months expenditure data
and the prediction accuracy increases up to 89% when the nine month
data is used. The experiments also show that the accuracy of ANN
model increases on an extended feature set with information of the
changes on the bill amounts.
1007
10011599
Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Abstract: Recently, the rapid development of deep learning makes
artificial intelligence (AI) penetrate into many fields, replacing
manual work there. In particular, AI systems also become a research
focus in the field of automatic office. To meet real needs in automatic
officiating, in this paper we develop an automatic form filling system.
Specifically, it uses two classical neural network models and several
word embedding models to classify various relevant information
elicited from the Internet. When training the neural network models,
we use less noisy and balanced data for training. We conduct a series
of experiments to test my systems and the results show that our
system can achieve better classification results.
1006
10011607
Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Abstract: The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.
1005
10011474
Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Abstract: Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
1004
10011486
Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Abstract: This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.
1003
10011523
Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Abstract: Automated object recognition and identification systems
are widely used throughout the world, particularly in assembly lines,
where they perform quality control and automatic part selection tasks.
This article presents the design and implementation of an object
recognition system in an assembly line. The proposed shapes-color
recognition system is based on deep learning theory in a specially
designed convolutional network architecture. The used methodology
involve stages such as: image capturing, color filtering, location
of object mass centers, horizontal and vertical object boundaries,
and object clipping. Once the objects are cut out, they are sent to
a convolutional neural network, which automatically identifies the
type of figure. The identification system works in real-time. The
implementation was done on a Raspberry Pi 3 system and on a
Jetson-Nano device. The proposal is used in an assembly course
of bachelor’s degree in industrial engineering. The results presented
include studying the efficiency of the recognition and processing time.
1002
10011419
Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Abstract: To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.
1001
10011440
Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Abstract: This paper presents and benchmarks a number of
end-to-end Deep Learning based models for metaphor detection in
Greek. We combine Convolutional Neural Networks and Recurrent
Neural Networks with representation learning to bear on the metaphor
detection problem for the Greek language. The models presented
achieve exceptional accuracy scores, significantly improving the
previous state-of-the-art results, which had already achieved accuracy
0.82. Furthermore, no special preprocessing, feature engineering or
linguistic knowledge is used in this work. The methods presented
achieve accuracy of 0.92 and F-score 0.92 with Convolutional
Neural Networks (CNNs) and bidirectional Long Short Term Memory
networks (LSTMs). Comparable results of 0.91 accuracy and 0.91
F-score are also achieved with bidirectional Gated Recurrent Units
(GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The
models are trained and evaluated only on the basis of training tuples,
the related sentences and their labels. The outcome is a state-of-the-art
collection of metaphor detection models, trained on limited labelled
resources, which can be extended to other languages and similar
tasks.
1000
10011458
Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Abstract: With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.
999
10011347
Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Abstract: Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
998
10011349
Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Abstract: Accurate segmentation of the optic disc is very
important for computer-aided diagnosis of several ocular diseases
such as glaucoma, diabetic retinopathy, and hypertensive retinopathy.
The paper presents an accurate and fast optic disc detection and
segmentation method using an attention based fully convolutional
network. The network is trained from scratch using the fundus images
of extended MESSIDOR database and the trained model is used for
segmentation of optic disc. The false positives are removed based on
morphological operation and shape features. The result is evaluated
using three-fold cross-validation on six public fundus image databases
such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE
DB1 and MESSIDOR. The attention based fully convolutional
network is robust and effective for detection and segmentation of
optic disc in the images affected by diabetic retinopathy and it
outperforms existing techniques.
997
10011370
Rule Insertion Technique for Dynamic Cell Structure Neural Network
Abstract: This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.
996
10011384
Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Abstract: Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
995
10011314
Machine Learning Techniques in Bank Credit Analysis
Abstract: The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
994
10011322
DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Abstract: With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.
993
10011232
Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Abstract: Over-parameterized neural networks have attracted a
great deal of attention in recent deep learning theory research,
as they challenge the classic perspective of over-fitting when
the model has excessive parameters and have gained empirical
success in various settings. While a number of theoretical works
have been presented to demystify properties of such models, the
convergence properties of such models are still far from being
thoroughly understood. In this work, we study the convergence
properties of training two-hidden-layer partially over-parameterized
fully connected networks with the Rectified Linear Unit activation via
gradient descent. To our knowledge, this is the first theoretical work
to understand convergence properties of deep over-parameterized
networks without the equally-wide-hidden-layer assumption and
other unrealistic assumptions. We provide a probabilistic lower bound
of the widths of hidden layers and proved linear convergence rate of
gradient descent. We also conducted experiments on synthetic and
real-world datasets to validate our theory.