28

10011288

Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source

Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.

27

10010094

Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

26

10004211

Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

The problem of conjugate free convection in a square
cavity filled with nanofluid and heated from below by spatial wall
temperature is studied numerically using the finite difference method.
Water-based nanofluid with copper nanoparticles are chosen for the
investigation. Governing equations are solved over a wide range
of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number
((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The
results presented for values of the governing parameters in terms of
streamlines, isotherms and average Nusselt number. It is found that
the flow behavior and the heat distribution are clearly enhanced with
the increment of the non-uniform heating.

25

10003370

Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

24

9998628

MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink

In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.

23

9997701

Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block

This paper is concerned with the effect of Hartmann number on the free convective flow in a square cavity with different positions of heated square block. The two-dimensional Physical and mathematical model have been developed, and mathematical model includes the system of governing mass, momentum and energy equations are solved by the finite element method. The calculations have been computed for Prandtl number Pr = 0.71, the Rayleigh number Ra = 1000 and the different values of Hartmann number. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.

22

9997332

Natural Convection Heat Transfer from Inclined Cylinders: A Unified Correlation

An empirical correlation for predicting the heat transfer coefficient for a cylinder under free convection, inclined at any arbitrary angle with the horizontal has been developed in terms of Nusselt number, Prandtl number and Grashof number. Available experimental data was used to determine the parameters for the proposed correlation. The proposed correlation predicts the available data well within ±10%, for Prandtl number in the range 0.68-0.72 and Grashof number in the range 1.4×104–1.2×1010.

21

9996823

Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

20

9997614

Unsteady Transient Free Convective Flow of an Incompressible Viscous Fluid under Influence of Uniform Transverse Magnetic Field

The unsteady transient free convection flow of an incompressible dissipative viscous fluid between parallel plates at different distances have been investigated under porous medium. Due to presence of heat flux under the influence of uniform transverse magnetic field the velocity distribution and the temperature distribution, is shown graphically. Since exact solution is not possible so we find parametrical solution by perturbation technique. The result is shown in graph for different parameters. We notice that heat generation effects fluid velocity keeping in which of free convection which cools.

19

13511

Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate

A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.

18

14778

Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli

Combined conduction-free convection heat transfer in
vertical eccentric annuli is numerically investigated using a finitedifference
technique. Numerical results, representing the heat transfer
parameters such as annulus walls temperature, heat flux, and heat
absorbed in the developing region of the annulus, are presented for a
Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5,
solid-fluid thermal conductivity ratio 10, inner and outer wall
dimensionless thicknesses 0.1 and 0.2, respectively, and
dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls
are subjected to thermal boundary conditions, which are obtained by
heating one wall isothermally whereas keeping the other wall at inlet
fluid temperature. In the present paper, the annulus heights required
to achieve thermal full development for prescribed eccentricities are
obtained. Furthermore, the variation in the height of thermal full
development as function of the geometrical parameter, i.e.,
eccentricity is also investigated.

17

4663

Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

A numerical study has been carried out to investigate
the heat transfer by natural convection of nanofluid taking Cu as
nanoparticles and the water as based fluid in a three dimensional
annulus enclosure filled with porous media (silica sand) between two
horizontal concentric cylinders with 12 annular fins of 2.4mm
thickness attached to the inner cylinder under steady state conditions.
The governing equations which used are continuity, momentum and
energy equations under an assumptions used Darcy law and
Boussinesq-s approximation which are transformed to dimensionless
equations. The finite difference approach is used to obtain all the
computational results using the MATLAB-7. The parameters affected
on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin
length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435)
and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the
average Nusselt number depends on (Ra*, Hf, Rr and φ). The results
show that, increasing of fin length decreases the heat transfer rate and
for low values of Ra*, decreasing Rr cause to decrease Nu while for
Ra*
greater than 100, decreasing Rr cause to increase Nu and adding
Cu nanoparticles with 0.35 volume fraction cause 27.9%
enhancement in heat transfer. A correlation for Nu in terms of Ra*,
Hf and φ, has been developed for inner hot cylinder.

16

17347

Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

15

9997097

Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls

Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.

14

728

Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

The present paper considers the steady free convection
boundary layer flow of a viscoelastic fluid on solid sphere with
Newtonian heating. The boundary layer equations are an order higher
than those for the Newtonian (viscous) fluid and the adherence
boundary conditions are insufficient to determine the solution of
these equations completely. Thus, the augmentation an extra
boundary condition is needed to perform the numerical
computational. The governing boundary layer equations are first
transformed into non-dimensional form by using special
dimensionless group and then solved by using an implicit finite
difference scheme. The results are displayed graphically to illustrate
the influence of viscoelastic K and Prandtl Number Pr parameters on
skin friction, heat transfer, velocity profiles and temperature profiles.
Present results are compared with the published papers and are found
to concur very well.

13

14867

Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure

Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.

12

13569

Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field

In this research, a 2-D computational analysis of
steady state free convection in a rectangular enclosure filled with an
electrically conducting fluid under Effect of Magnetic Field has been
performed. The governing equations (mass, momentum, and energy)
are formulated and solved by a finite volume method (FVM)
subjected to different boundary conditions. A parametric study has
been conducted to consider the influence of Grashof number (Gr),
Prantdl number (Pr) and the orientation of magnetic field on the flow
and heat transfer characteristics. It is observed that Nusselt number
(Nu) and heat flux will increase with increasing Grashof and Prandtl
numbers and decreasing the slope of the orientation of magnetic field.

11

13974

Behavior of Ice Melting in Natural Convention

In this paper, the ice melting in rectangular,
cylindrical and conical forms, which are erected vertically against air
flow, are experimentally studied in the free convection regime.The
results obtained are: Nusslet Number, heat transfer coefficient
andGrashof Number, and the variations of the said numbers in
relation to the time. The variations of ice slab area and volume are
measured, too.

10

3433

Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

The transient hydrodynamics and thermal behaviors of
fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic
heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the
study. The Effects of Knudsen number , Darcy number , and thermal relaxation time on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat
conduction models. It is found that as increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in
the hydrodynamic boundary condition increases as increases. Also, the slip in the thermal boundary condition increases as
decreases especially the early stage of time.

9

4539

Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation

The present paper considers the steady free
convection boundary layer flow of a viscoelastics fluid with constant
temperature in the presence of heat generation. The boundary layer
equations are an order higher than those for the Newtonian (viscous)
fluid and the adherence boundary conditions are insufficient to
determine the solution of these equations completely. The governing
boundary layer equations are first transformed into non-dimensional
form by using special dimensionless group. Computations are
performed numerically by using Keller-box method by augmenting
an extra boundary condition at infinity and the results are displayed
graphically to illustrate the influence of viscoelastic K, heat
generation γ , and Prandtl Number, Pr parameters on the velocity
and temperature profiles. The results of the surface shear stress in
terms of the local skin friction and the surface rate of heat transfer in
terms of the local Nusselt number for a selection of the heat
generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and
presented in both tabular and graphical formats. Without effect of the
internal heat generation inside the fluid domain for which we take
γ = 0.0, the present numerical results show an excellent agreement
with previous publication.

8

7055

Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

This paper considers the effect of heat generation
proportional l to (T - T∞ )p , where T is the local temperature and T∞
is the ambient temperature, in unsteady free convection flow near the
stagnation point region of a three-dimensional body. The fluid is
considered in an ambient fluid under the assumption of a step change
in the surface temperature of the body. The non-linear coupled partial
differential equations governing the free convection flow are solved
numerically using an implicit finite-difference method for different
values of the governing parameters entering these equations. The
results for the flow and heat characteristics when p ≤ 2 show that
the transition from the initial unsteady-state flow to the final steadystate
flow takes place smoothly. The behavior of the flow is seen
strongly depend on the exponent p.

7

4602

Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

We report the results of an lattice Boltzmann
simulation of magnetohydrodynamic damping of sidewall convection
in a rectangular enclosure filled with a porous medium. In particular
we investigate the suppression of convection when a steady magnetic
field is applied in the vertical direction. The left and right vertical
walls of the cavity are kept at constant but different temperatures
while both the top and bottom horizontal walls are insulated. The
effects of the controlling parameters involved in the heat transfer and
hydrodynamic characteristics are studied in detail. The heat and mass
transfer mechanisms and the flow characteristics inside the enclosure
depended strongly on the strength of the magnetic field and Darcy
number. The average Nusselt number decreases with rising values of
the Hartmann number while this increases with increasing values of
the Darcy number.

6

7592

Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source

Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.

5

15267

Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet

In this study, an analysis has been performed for
conjugate heat and mass transfer of a steady laminar boundary-layer
mixed convection of magnetic hydrodynamic (MHD) flow with
radiation effect of second grade subject to suction past a stretching
sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of
the viscoelastic fluid heat and mass transfer effect which have
presented in governing equations, respectively. The similar
transformation and the finite-difference method have been used to
analyze the present problem. The conjugate heat and mass transfer
results show that the non-Newtonian viscoelastic fluid has a better heat
transfer effect than the Newtonian fluid. The free convection with a
larger r G or c G has a good heat transfer effect better than a smaller
r G or c G , and the radiative convection has a good heat transfer
effect better than non-radiative convection.

4

4670

Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

A conjugate heat transfer for steady two-dimensional
mixed convection with magnetic hydrodynamic (MHD) flow of an
incompressible quiescent fluid over an unsteady thermal forming
stretching sheet has been studied. A parameter, M, which is used to
represent the dominance of the magnetic effect has been presented in
governing equations. The similar transformation and an implicit
finite-difference method have been used to analyze the present
problem. The numerical solutions of the flow velocity distributions,
temperature profiles, the wall unknown values of f''(0) and '(θ (0) for
calculating the heat transfer of the similar boundary-layer flow are
carried out as functions of the unsteadiness parameter (S), the Prandtl
number (Pr), the space-dependent parameter (A) and
temperature-dependent parameter (B) for heat source/sink and the
magnetic parameter (M). The effects of these parameters have also
discussed. At the results, it will produce greater heat transfer effect
with a larger Pr and M, S, A, B will reduce heat transfer effects. At
last, conjugate heat transfer for the free convection with a larger G has
a good heat transfer effect better than a smaller G=0.

3

11853

Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet

In this study, an analysis has been performed for
free convection with radiation effect over a thermal forming
nonlinearly stretching sheet. Parameters n, k0, Pr, G represent
the dominance of the nonlinearly effect, radiation effect, heat
transfer and free convection effects which have been presented
in governing equations, respectively. The similarity
transformation and the finite-difference methods have been
used to analyze the present problem. From the results, we find
that the effects of parameters n, k0, Pr, Ec and G to the
nonlinearly stretching sheet. The increase of Prandtl number Pr,
free convection parameter G or radiation parameter k0 resulting
in the increase of heat transfer effects, but increase of the
viscous dissipation number Ec will decrease of heat transfer
effect.

2

6226

Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method

In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.

1

3520

Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature

This paper aims to perform the second law analysis of
thermodynamics on the laminar film condensation of pure saturated
vapor flowing in the direction of gravity on an ellipsoid with variable
wall temperature. The analysis provides us understanding how the
geometric parameter- ellipticity and non-isothermal wall temperature
variation amplitude “A." affect entropy generation during film-wise
condensation heat transfer process. To understand of which
irreversibility involved in this condensation process, we derived an
expression for the entropy generation number in terms of ellipticity
and A. The result indicates that entropy generation increases with
ellipticity. Furthermore, the irreversibility due to finite temperature
difference heat transfer dominates over that due to condensate film
flow friction and the local entropy generation rate decreases with
increasing A in the upper half of ellipsoid. Meanwhile, the local
entropy generation rate enhances with A around the rear lower half of
ellipsoid.