International Science Index

14
10012097
Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain
Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

13
10011800
Automated Method Time Measurement System for Redesigning Dynamic Facility Layout
Abstract:

The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Paper Detail
117
downloads
12
10010833
Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
Abstract:
In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.
Paper Detail
581
downloads
11
10007935
Production Line Layout Planning Based on Complexity Measurement
Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Paper Detail
736
downloads
10
10005273
A Quadratic Programming for Truck-to-Door Assignment Problem
Abstract:

Cross-docking includes receiving products supplied by a set of suppliers, unloading them from inbound trucks (ITs) at strip doors, consolidating and handling these products to stack doors based on their destinations, loading them into outbound trucks (OTs); then, delivering these products to customers. An effective assignment of the trucks to the doors would enhance the advantages of the cross-docking (e.g. reduction of the handling costs). This paper addresses the truck-to-door assignment problem in a cross-dock in which assignment of the ITs to the strip doors as well as assignment of the OTs to the stacks doors is determined so that total material handling cost in the cross-dock is minimized. Capacity constraints are applied for the ITs, OTs, strip doors, and stack doors. We develop a Quadratic Programming (QP) to formulate the problem. To solve it, the model is coded in LINGO software to specify the best assignment of the trucks to the doors.

Paper Detail
1283
downloads
9
9999091
Different in Factors of the Distributor Selection for Food and Non-Food OTOP Entrepreneur in Thailand
Abstract:

This study has only one objective which is to identify the different in factors of choosing the distributor for food and non-food OTOP entrepreneur in Thailand. In this research, the types of OTOP product will be divided into two groups which are food and non-food. The sample for the food type OTOP product was the processed fruit and vegetable from Nakorn Pathom province and the sample for the non-food type OTOP product was the court doll from Ang Thong province. The research was divided into 3 parts which were a study of the distribution pattern and how to choose the distributor of the food type OTOP product, a study of the distribution pattern and how to choose the distributor of the non-food type OTOP product and a comparison between 2 types of products to find the differentiation in the factor of choosing distributor. The data and information was collected by using the interview. The populations in the research were 5 producers of the processed fruit and vegetable from Nakorn Pathom province and 5 producers of the court doll from Ang Thong province. The significant factor in choosing the distributor of the food type OTOP product is the material handling efficiency and on-time delivery but for the non-food type OTOP product is focused on the channel of distribution and cost of the distributor.

Paper Detail
1357
downloads
8
16153
Optimal Facility Layout Problem Solution Using Genetic Algorithm
Abstract:

Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.

Paper Detail
4127
downloads
7
8941
Lightweight Robotic Material Handling in Photovoltaic Module Manufacturing-Silicon Wafer and Thin Film Technologies
Abstract:

Today, the central role of industrial robots in automation in general and in material handling in particular is crystal clear. Based on the current status of Photovoltaics and by focusing on lightweight material handling, PV industry has turned into a potential candidate for introducing a fresh “pick and place" robot technology. Thus, to examine the industry needs in this regard, firstly the best suited applications for such robotic automation,and then the essential prerequisites in PV industry should be identified. The objective of this paper is to present holistic views on the industry trends, general automation status and existing challenges facing lightweight robotic material handling in PV Silicon Wafer and Thin Film technologies. The results of this study show that currently no uniform pick and place solution prevails among PV Silicon Wafer manufacturers and the industry calls for a new robot solution to satisfy its needs in new directions.

Paper Detail
1622
downloads
6
4341
Development and Optimization of Automated Dry-Wafer Separation
Abstract:
In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.
Paper Detail
1399
downloads
5
15491
Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process
Abstract:
The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.
Paper Detail
2740
downloads
4
12945
Improvements in Material Handling: A Case Study of Cement Manufacturing Plant
Authors:
Abstract:

The globalization of the Indian economy has thrown a great challenge to the Indian industries in respect of productivity, quality, cost, delivery etc. Achieving success• the global market has required fundamental shift in the way business is conducted and has dramatically affected virtually every aspect of process industry. The internal manufacturing process and supporting infrastructure should be such that it can compete successfully in global markets with better flexibility and delivery. The paper deals with a case study of a reputed process industry, some changes in the process has been suggested, which leads to reduction in labor cost and production cost.

Paper Detail
4486
downloads
3
1827
Design, Development and Analysis of Automated Storage and Retrieval System with Single and Dual Command Dispatching using MATLAB
Abstract:
Automated material handling is given prime importance in the semi automated and automated facilities since it provides solution to the gigantic problems related to inventory and also support the latest philosophies like just in time production JIT and lean production. Automated storage and retrieval system is an antidote (if designed properly) to the facility sufferings like getting the right material , materials getting perished, long cycle times or many other similar kind of problems. A working model of automated storage and retrieval system (AS/RS) is designed and developed under the design parameters specified by Material Handling Industry of America (MHIA). Later on analysis was carried out to calculate the throughput and size of the machine. The possible implementation of this technology in local scenario is also discussed in this paper.
Paper Detail
3021
downloads
2
8558
The Optimal Design for Grip Force of Material Handling
Abstract:
Applied a mouse-s roller with a gripper to increase the efficiency for a gripper can learn to a material handling without slipping. To apply a gripper, we use the optimize principle to develop material handling by use a signal for checking a roller mouse that rotate or not. In case of the roller rotates means that the material slips. A gripper will slide to material handling until the roller will not rotate. As this experiment has test material handling for comparing a grip force that uses to material handling of the 10-human with the applied gripper. We can summarize that human exert the material handling more than the applied gripper. Because of the gripper can exert more befit to material handling than human and may be a minimum force to lift a material without slipping.
Paper Detail
1174
downloads
1
14341
P-ACO Approach to Assignment Problem in FMSs
Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Paper Detail
1521
downloads