8

10011433

Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

7

10009727

A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures

This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.

6

10007864

Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

The random dither quantization method enables us
to achieve much better performance than the simple uniform
quantization method for the design of quantized control systems.
Motivated by this fact, the stochastic model predictive control
method in which a performance index is minimized subject to
probabilistic constraints imposed on the state variables of systems
has been proposed for linear feedback control systems with random
dither quantization. In other words, a method for solving optimal
control problems subject to probabilistic state constraints for linear
discrete-time control systems with random dither quantization has
been already established. To our best knowledge, however, the
feasibility of such a kind of optimal control problems has not
yet been studied. Our objective in this paper is to investigate the
feasibility of stochastic model predictive control problems for linear
discrete-time control systems with random dither quantization. To
this end, we provide the results of numerical simulations that verify
the feasibility of stochastic model predictive control problems for
linear discrete-time control systems with random dither quantization.

5

10007800

Attitude Stabilization of Satellites Using Random Dither Quantization

Recently, the effectiveness of random dither
quantization method for linear feedback control systems has
been shown in several papers. However, the random dither
quantization method has not yet been applied to nonlinear feedback
control systems. The objective of this paper is to verify the
effectiveness of random dither quantization method for nonlinear
feedback control systems. For this purpose, we consider the attitude
stabilization problem of satellites using discrete-level actuators.
Namely, this paper provides a control method based on the random
dither quantization method for stabilizing the attitude of satellites
using discrete-level actuators.

4

10006341

Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Recently, feedback control systems using random dither
quantizers have been proposed for linear discrete-time systems.
However, the constraints imposed on state and control variables
have not yet been taken into account for the design of feedback
control systems with random dither quantization. Model predictive
control is a kind of optimal feedback control in which control
performance over a finite future is optimized with a performance
index that has a moving initial and terminal time. An important
advantage of model predictive control is its ability to handle
constraints imposed on state and control variables. Based on the
model predictive control approach, the objective of this paper is to
present a control method that satisfies probabilistic state constraints
for linear discrete-time feedback control systems with random dither
quantization. In other words, this paper provides a method for
solving the optimal control problems subject to probabilistic state
constraints for linear discrete-time feedback control systems with
random dither quantization.

3

10005484

A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

This paper presents a nonlinear differential model,
for a three-bladed horizontal axis wind turbine (HAWT) suited
for control applications. It is based on a 8-dofs, lumped
parameters structural dynamics coupled with a quasi-steady sectional
aerodynamics. In particular, using the Euler-Lagrange Equation
(Energetic Variation approach), the authors derive, and successively
validate, such model. For the derivation of the aerodynamic model,
the Greenbergs theory, an extension of the theory proposed by
Theodorsen to the case of thin airfoils undergoing pulsating flows,
is used. Specifically, in this work, the authors restricted that theory
under the hypothesis of low perturbation reduced frequency k,
which causes the lift deficiency function C(k) to be real and equal
to 1. Furthermore, the expressions of the aerodynamic loads are
obtained using the quasi-steady strip theory (Hodges and Ormiston),
as a function of the chordwise and normal components of relative
velocity between flow and airfoil Ut, Up, their derivatives, and
section angular velocity ε˙. For the validation of the proposed model,
the authors carried out open and closed-loop simulations of a 5
MW HAWT, characterized by radius R =61.5 m and by mean chord
c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec.
The first analysis performed is the steady state solution, where
a uniform wind Vw = 11.4 m/s is considered and a collective
pitch angle θ = 0.88◦ is imposed. During this step, the authors
noticed that the proposed model is intrinsically periodic due to
the effect of the wind and of the gravitational force. In order
to reject this periodic trend in the model dynamics, the authors
propose a collective repetitive control algorithm coupled with a PD
controller. In particular, when the reference command to be tracked
and/or the disturbance to be rejected are periodic signals with a
fixed period, the repetitive control strategies can be applied due to
their high precision, simple implementation and little performance
dependency on system parameters. The functional scheme of a
repetitive controller is quite simple and, given a periodic reference
command, is composed of a control block Crc(s) usually added
to an existing feedback control system. The control block contains
and a free time-delay system eτs in a positive feedback loop, and a
low-pass filter q(s). It should be noticed that, while the time delay
term reduces the stability margin, on the other hand the low pass
filter is added to ensure stability. It is worth noting that, in this
work, the authors propose a phase shifting for the controller and
the delay system has been modified as e^(−(T−γk)), where T is the
period of the signal and γk is a phase shifting of k samples of the
same periodic signal. It should be noticed that, the phase shifting
technique is particularly useful in non-minimum phase systems, such
as flexible structures. In fact, using the phase shifting, the iterative
algorithm could reach the convergence also at high frequencies.
Notice that, in our case study, the shifting of k samples depends
both on the rotor angular velocity Ω and on the rotor azimuth
angle Ψ: we refer to this controller as a spatial repetitive controller.
The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades.
The performance of the spatial repetitive controller is compared
with an industrial PI controller. In particular, starting from wind
speed velocity Vw = 11.4 m/s the controller is asked to maintain the
nominal angular velocity Ωn = 1.266rad/s after an instantaneous
increase of wind speed (Vw = 15 m/s). Then, a purely periodic
external disturbance is introduced in order to stress the capabilities
of the repetitive controller. The results of the simulations show that,
contrary to a simple PI controller, the spatial repetitive-PD controller
has the capability to reject both external disturbances and periodic
trend in the model dynamics. Finally, the nominal value of the
angular velocity is reached, in accordance with results obtained with
commercial software for a turbine of the same type.

2

7006

The Fundamental Reliance of Iterative Learning Control on Stability Robustness

Iterative learning control aims to achieve zero tracking
error of a specific command. This is accomplished by iteratively
adjusting the command given to a feedback control system, based on
the tracking error observed in the previous iteration. One would like
the iterations to converge to zero tracking error in spite of any error
present in the model used to design the learning law. First, this need
for stability robustness is discussed, and then the need for robustness
of the property that the transients are well behaved. Methods of
producing the needed robustness to parameter variations and to
singular perturbations are presented. Then a method involving
reverse time runs is given that lets the world behavior produce the
ILC gains in such a way as to eliminate the need for a mathematical
model. Since the real world is producing the gains, there is no issue
of model error. Provided the world behaves linearly, the approach
gives an ILC law with both stability robustness and good transient
robustness, without the need to generate a model.

1

15936

Robust Stability in Multivariable Neural Network Control using Harmonic Analysis

Robust stability and performance are the two most
basic features of feedback control systems. The harmonic balance
analysis technique enables to analyze the stability of limit cycles
arising from a neural network control based system operating over
nonlinear plants. In this work a robust stability analysis based on the
harmonic balance is presented and applied to a neural based control
of a non-linear binary distillation column with unstructured
uncertainty. We develop ways to describe uncertainty in the form of
neglected nonlinear dynamics and high harmonics for the plant and
controller respectively. Finally, conclusions about the performance of
the neural control system are discussed using the Nyquist stability
margin together with the structured singular values of the uncertainty
as a robustness measure.