7

10011222

Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

This paper presents a multi-objective optimal design of
a cascade control system for an underactuated mechanical system.
Cascade control structures usually include two control algorithms
(inner and outer). To design such a control system properly, the
following conflicting objectives should be considered at the same
time: 1) the inner closed-loop control must be faster than the outer
one, 2) the inner loop should fast reject any disturbance and prevent
it from propagating to the outer loop, 3) the controlled system
should be insensitive to measurement noise, and 4) the controlled
system should be driven by optimal energy. Such a control problem
can be formulated as a multi-objective optimization problem such
that the optimal trade-offs among these design goals are found.
To authors best knowledge, such a problem has not been studied
in multi-objective settings so far. In this work, an underactuated
mechanical system consisting of a rotary servo motor and a ball
and beam is used for the computer simulations, the setup parameters
of the inner and outer control systems are tuned by NSGA-II
(Non-dominated Sorting Genetic Algorithm), and the dominancy
concept is used to find the optimal design points. The solution of
this problem is not a single optimal cascade control, but rather a set
of optimal cascade controllers (called Pareto set) which represent the
optimal trade-offs among the selected design criteria. The function
evaluation of the Pareto set is called the Pareto front. The solution
set is introduced to the decision-maker who can choose any point
to implement. The simulation results in terms of Pareto front and
time responses to external signals show the competing nature among
the design objectives. The presented study may become the basis for
multi-objective optimal design of multi-loop control systems.

6

10004885

Fractional-Order PI Controller Tuning Rules for Cascade Control System

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

5

10004465

Analysis of Cascade Control Structure in Train Dynamic Braking System

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

4

10003066

Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

In this paper, a robust fault detection and isolation
(FDI) scheme is developed to monitor a multivariable nonlinear
chemical process called the Chylla-Haase polymerization reactor,
when it is under the cascade PI control. The scheme employs a radial
basis function neural network (RBFNN) in an independent mode to
model the process dynamics, and using the weighted sum-squared
prediction error as the residual. The Recursive Orthogonal Least
Squares algorithm (ROLS) is employed to train the model to
overcome the training difficulty of the independent mode of the
network. Then, another RBFNN is used as a fault classifier to isolate
faults from different features involved in the residual vector. Several
actuator and sensor faults are simulated in a nonlinear simulation of
the reactor in Simulink. The scheme is used to detect and isolate the
faults on-line. The simulation results show the effectiveness of the
scheme even the process is subjected to disturbances and
uncertainties including significant changes in the monomer feed rate,
fouling factor, impurity factor, ambient temperature, and
measurement noise. The simulation results are presented to illustrate
the effectiveness and robustness of the proposed method.

3

10000811

Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

At present, the cascade PID control is widely used to control the superheating temperature (main steam temperature). As Main Steam Temperature has the characteristics of large inertia, large time-delay and time varying, etc., conventional PID control strategy cannot achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) - P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

2

9999040

RBF Modelling and Optimization Control for Semi-Batch Reactors

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

1

15801

Optimum Control Strategy of Three-Phase Shunt Active Filter System

The aim of this paper is to identify an optimum
control strategy of three-phase shunt active filters to minimize the total harmonic distortion factor of the supply current. A classical PIPI cascade control solution of the output current of the active filterand the voltage across the DC capacitor based on Modulus–Optimum
criterion is taken into consideration. The control system operation
has been simulated using Matlab-Simulink environment and the results agree with the theoretical expectation. It is shown that there is
an optimum value of the DC-bus voltage which minimizes the supply current harmonic distortion factor. It corresponds to the equality of the apparent power at the output of the active filter and the apparent power across the capacitor. Finally, predicted results are verified experimentally on a MaxSine active power filter.