International Science Index
29
10011722
Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method
Abstract: The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.
28
10011746
Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Abstract: This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.
27
10010311
A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Abstract: This paper discusses a brain controlled robotic gait
trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients.
Patients suffering from Spinal Cord Injuries (SCI) become unable to
execute motion control of their lower proximities due to degeneration
of spinal cord neurons. The presented approach can help SCI patients
in neuro-rehabilitation training by directly translating patient motor
imagery into walkers motion commands and thus bypassing spinal
cord neurons completely. A non-invasive EEG based brain-computer
interface is used for capturing patient neural activity. For signal
processing and classification, an open source software (OpenVibe)
is used. Classifiers categorize the patient motor imagery (MI) into
a specific set of commands that are further translated into walker
motion commands. The robotic walker also employs fall detection
for ensuring safety of patient during gait training and can act as a
support for SCI patients. The gait trainer is tested with subjects, and
satisfactory results were achieved.
26
10009609
Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Abstract: In this paper, we propose an optimized brain computer
interface (BCI) system for unspoken speech recognition, based on
the fact that the constructions of unspoken words rely strongly on the
Wernicke area, situated in the temporal lobe. Our BCI system has four
modules: (i) the EEG Acquisition module based on a non-invasive
headset with 14 electrodes; (ii) the Preprocessing module to remove
noise and artifacts, using the Common Average Reference method;
(iii) the Features Extraction module, using Wavelet Packet Transform
(WPT); (iv) the Classification module based on a one-hidden layer
artificial neural network. The present study consists of comparing
the recognition accuracy of 5 Arabic words, when using all the
headset electrodes or only the 4 electrodes situated near the Wernicke
area, as well as the selection effect of the subbands produced by
the WPT module. After applying the articial neural network on the
produced database, we obtain, on the test dataset, an accuracy of
83.4% with all the electrodes and all the subbands of 8 levels of the
WPT decomposition. However, by using only the 4 electrodes near
Wernicke Area and the 6 middle subbands of the WPT, we obtain
a high reduction of the dataset size, equal to approximately 19% of
the total dataset, with 67.5% of accuracy rate. This reduction appears
particularly important to improve the design of a low cost and simple
to use BCI, trained for several words.
25
10008379
Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators
Abstract: The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.
24
10008378
(∈,∈∨q)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators
Abstract: The aim of this paper is to introduce the concepts of (∈, ∈∨q)-fuzzy subalgebras, (∈,∈∨q)-fuzzy ideals and (∈,∈∨q)-fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.
23
10007869
Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators
Abstract: The aim of this paper is to introduce the concepts of fuzzy subalgebras, fuzzy ideals and fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.
22
10002873
Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Abstract: Brain-Computer Interfaces (BCIs) measure brain
signals activity, intentionally and unintentionally induced by users,
and provides a communication channel without depending on the
brain’s normal peripheral nerves and muscles output pathway.
Feature Selection (FS) is a global optimization machine learning
problem that reduces features, removes irrelevant and noisy data
resulting in acceptable recognition accuracy. It is a vital step
affecting pattern recognition system performance. This study presents
a new Binary Particle Swarm Optimization (BPSO) based feature
selection algorithm. Multi-layer Perceptron Neural Network
(MLPNN) classifier with backpropagation training algorithm and
Levenberg-Marquardt training algorithm classify selected features.
21
10001604
Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients
Abstract: Cerebellar ataxia is a steadily progressive
neurodegenerative disease associated with loss of motor control,
leaving patients unable to walk, talk, or perform activities of daily
living. Direct motor instruction in cerebella ataxia patients has limited
effectiveness, presumably because an inappropriate closed-loop
cerebellar response to the inevitable observed error confounds motor
learning mechanisms. Could the use of EEG based BCI provide
advanced biofeedback to improve motor imagery and provide a
“backdoor” to improving motor performance in ataxia patients? In
order to determine the feasibility of using EEG-based BCI control in
this population, we compare the ability to modulate mu-band power
(8-12 Hz) by performing a cued motor imagery task in an ataxia
patient and healthy control.
20
10000921
Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Abstract: Electroencephalogram (EEG) is a noninvasive
technique that registers signals originating from the firing of neurons
in the brain. The Emotiv EEG Neuroheadset is a consumer product
comprised of 14 EEG channels and was used to record the reactions
of the neurons within the brain to two forms of stimuli in 10
participants. These stimuli consisted of auditory and visual formats
that provided directions of ‘right’ or ‘left.’ Participants were
instructed to raise their right or left arm in accordance with the
instruction given. A scenario in OpenViBE was generated to both
stimulate the participants while recording their data. In OpenViBE,
the Graz Motor BCI Stimulator algorithm was configured to govern
the duration and number of visual stimuli. Utilizing EEGLAB under
the cross platform MATLAB®, the electrodes most stimulated during
the study were defined. Data outputs from EEGLAB were analyzed
using IBM SPSS Statistics® Version 20. This aided in determining
the electrodes to use in the development of a brain-machine interface
(BMI) using real-time EEG signals from the Emotiv EEG
Neuroheadset. Signal processing and feature extraction were
accomplished via the Simulink® signal processing toolbox. An
Arduino™ Duemilanove microcontroller was used to link the Emotiv
EEG Neuroheadset and the right and left Mecha TE™ Hands.
19
10003203
Intuitionistic Fuzzy Positive Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Abstract: The aim of this paper is to introduce the notion of
intuitionistic fuzzy positive implicative ideals with thresholds (λ, μ) of
BCI-algebras and to investigate its properties and characterizations.
18
9999563
Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients
Abstract: In healthy humans, the cortical brain rhythm shows
specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the
cases of both real and imaginary motor movements. As cerebellar
ataxia is associated with impairment of precise motor movement
control as well as motor imagery, ataxia is an ideal model system in
which to study the role of the cerebellocortical circuit in rhythm
control. We hypothesize that the EEG characteristics of ataxic patients
differ from those of controls during the performance of a
Brain-Computer Interface (BCI) task. Ataxia and control subjects
showed a similar distribution of mu power during cued relaxation.
During cued motor imagery, however, the ataxia group showed
significant spatial distribution of the response, while the control group
showed the expected decrease in mu-band power (localized to the
motor cortex).
17
9998906
Robot Control by ERPs of Brain Waves
Abstract: This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.
16
9999087
Designing an Online Case-Based Library for Technology Integration in Teacher Education
Abstract: The purpose of this paper is to introduce an interactive online case-study library website developed in a national project. The design goal of the website is to provide interactive, enhanced, case-based and online educational resource for educators through the purpose and within the scope of a national project. The ADDIE instructional design model was used in the development of the website for interactive case-based library. This library is developed on a web-based platform, which is important in terms of manageability, accessibility, and updateability of data. Users are able to sort the displayed case-studies by their titles, dates, ratings, view counts, etc. The usability test is used and the expert opinion is taken for the evaluation of the website. This website is a tool to integrate technology into education. It is believed that this website will be beneficial for pre-service and in-service teachers in terms of their professional developments.
15
9999123
The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions
Abstract: The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.
14
9999676
Intuitionistic T-S Fuzzy Subalgebras and Ideals in BCI-algebras
Abstract: The aim of this paper is to introduce the notions of
intuitionistic T-S fuzzy subalgebras and intuitionistic T-S fuzzy ideals
in BCI-algebras, and then to investigate their basic properties.
13
9998418
A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Abstract: It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.
12
9997644
A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Abstract: Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.
11
9997846
Intuitionistic Fuzzy Subalgebras (Ideals) with Thresholds (λ, μ) of BCI-Algebras
Abstract: Based on the theory of intuitionistic fuzzy sets, the concepts of intuitionistic fuzzy subalgebras with thresholds (λ, μ) and intuitionistic fuzzy ideals with thresholds (λ, μ) of BCI-algebras are introduced and some properties of them are discussed.
10
17277
Increased Signal to Noise Ratio in P300 Potentials by the Method of Coherent Self-Averaging in BCI Systems
Abstract: The coherent Self-Averaging (CSA), is a new method proposed in this work; applied to simulated signals evoked potentials related to events (ERP) to find the wave P300, useful systems in the brain computer interface (BCI). The CSA method cleans signal in the time domain of white noise through of successive averaging of a single signal. The method is compared with the traditional method, coherent averaging or synchronized (CA), showing optimal results in the improvement of the signal to noise ratio (SNR). The method of CSA is easy to implement, robust and applicable to any physiological time series contaminated with white noise
9
9997230
Intuitionistic Fuzzy Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Abstract: The aim of this paper is to introduce the notion of intuitionistic fuzzy implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.
8
11150
Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Abstract: In this study we focus on improvement performance
of a cue based Motor Imagery Brain Computer Interface (BCI). For
this purpose, data fusion approach is used on results of different
classifiers to make the best decision. At first step Distinction
Sensitive Learning Vector Quantization method is used as a feature
selection method to determine most informative frequencies in
recorded signals and its performance is evaluated by frequency
search method. Then informative features are extracted by packet
wavelet transform. In next step 5 different types of classification
methods are applied. The methodologies are tested on BCI
Competition II dataset III, the best obtained accuracy is 85% and the
best kappa value is 0.8. At final step ordered weighted averaging
(OWA) method is used to provide a proper aggregation classifiers
outputs. Using OWA enhanced system accuracy to 95% and kappa
value to 0.9. Applying OWA just uses 50 milliseconds for
performing calculation.
7
9996958
Active Segment Selection Method in EEG Classification Using Fractal Features
Abstract: BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
6
14047
Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks
Abstract: Brain Computer Interface (BCI) has been recently
increased in research. Functional Near Infrared Spectroscope (fNIRs)
is one the latest technologies which utilize light in the near-infrared
range to determine brain activities. Because near infrared technology
allows design of safe, portable, wearable, non-invasive and wireless
qualities monitoring systems, fNIRs monitoring of brain
hemodynamics can be value in helping to understand brain tasks. In
this paper, we present results of fNIRs signal analysis indicating that
there exist distinct patterns of hemodynamic responses which
recognize brain tasks toward developing a BCI. We applied two
different mathematics tools separately, Wavelets analysis for
preprocessing as signal filters and feature extractions and Neural
networks for cognition brain tasks as a classification module. We
also discuss and compare with other methods while our proposals
perform better with an average accuracy of 99.9% for classification.
5
10839
Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification
Abstract: Classification of electroencephalogram (EEG) signals
extracted during mental tasks is a technique that is actively pursued
for Brain Computer Interfaces (BCI) designs. In this paper, we
compared the classification performances of univariateautoregressive
(AR) and multivariate autoregressive (MAR) models
for representing EEG signals that were extracted during different
mental tasks. Multilayer Perceptron (MLP) neural network (NN)
trained by the backpropagation (BP) algorithm was used to classify
these features into the different categories representing the mental
tasks. Classification performances were also compared across
different mental task combinations and 2 sets of hidden units (HU): 2
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different
mental tasks from 4 subjects were used in the experimental study and
combinations of 2 different mental tasks were studied for each
subject. Three different feature extraction methods with 6th order
were used to extract features from these EEG signals: AR
coefficients computed with Burg-s algorithm (ARBG), AR
coefficients computed with stepwise least square algorithm (ARLS)
and MAR coefficients computed with stepwise least square
algorithm. The best results were obtained with 20 to 100 HU using
ARBG. It is concluded that i) it is important to choose the suitable
mental tasks for different individuals for a successful BCI design, ii)
higher HU are more suitable and iii) ARBG is the most suitable
feature extraction method.
4
12538
Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling
Abstract: EEG signal is one of the oldest measures of brain
activity that has been used vastly for clinical diagnoses and
biomedical researches. However, EEG signals are highly
contaminated with various artifacts, both from the subject and from
equipment interferences. Among these various kinds of artifacts,
ocular noise is the most important one. Since many applications such
as BCI require online and real-time processing of EEG signal, it is
ideal if the removal of artifacts is performed in an online fashion.
Recently, some methods for online ocular artifact removing have
been proposed. One of these methods is ARMAX modeling of EEG
signal. This method assumes that the recorded EEG signal is a
combination of EOG artifacts and the background EEG. Then the
background EEG is estimated via estimation of ARMAX parameters.
The other recently proposed method is based on adaptive filtering.
This method uses EOG signal as the reference input and subtracts
EOG artifacts from recorded EEG signals. In this paper we
investigate the efficiency of each method for removing of EOG
artifacts. A comparison is made between these two methods. Our
undertaken conclusion from this comparison is that adaptive filtering
method has better results compared with the results achieved by
ARMAX modeling.
3
13088
Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Abstract: The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
2
4851
Some Clopen Sets in the Uniform Topology on BCI-algebras
Abstract: In this paper some properties of the uniformity topology on a BCI-algebras are discussed.
1
9878
EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Abstract: The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.