International Science Index


14761

Synchronization between the Slow Oscillations in the Human Cardiovascular System

Abstract:Synchronization between the slow oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz is investigated. A method is proposed for quantitative estimation of synchronization between these oscillating processes based on calculation of relative time of phase synchronization of oscillations. It is shown that healthy subjects exhibit in average substantially longer epochs of synchronization between the slow oscillations in heart rate and blood pressure than patients after acute myocardial infarction
References:
[1] C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, "Heartbeat synchronized with ventilation," Nature, vol. 392, pp. 239-240, Mar. 1998.
[2] S. Rzeczinski, N. B. Janson, A. G. Balanov, and P. V. E. McClintock, "Regions of cardiorespiratory synchronization in humans under paced respiration," Phys. Rev. E, vol. 66, 051909, Nov. 2002.
[3] M. D. Prokhorov, V. I. Ponomarenko, V. I. Gridnev, M. B. Bodrov, and A. B. Bespyatov, "Synchronization between main rhythmic processes in the human cardiovascular system," Phys. Rev. E, vol. 68, 041913, Oct. 2003.
[4] R. Bartsch, J. W. Kantelhardt, T. Penzel, and S. Havlin, "Experimental evidence for phase synchronization transitions in the human cardiorespiratory system," Phys. Rev. Lett., vol. 98, 054102, Feb. 2007.
[5] S. Malpas, "Neural influences on cardiovascular variability: Possibilities and pitfalls," Am. J. Physiol. Heart Circ. Physiol., vol. 282, pp. 6-20, Jan. 2002.
[6] L. Bernardi, D. Hayoz, R. Wenzel, C. Passino, A. Calciati, R. Weber, and G. Noll, "Synchronous and baroceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control," Am. J. Physiol. Heart Circ. Physiol., vol. 273, pp. 1867-1878, Oct. 1997.
[7] N. Montano, T. Gnecchi-Ruscone, A. Porta, F. Lombardi, A. Malliani, and S. M. Barman, "Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system," J. Auton. Nerv. Syst., vol. 57, pp. 116-122, Feb. 1996.
[8] R. L. Cooley, N. Montano, C. Cogliati, P. van de Borne, W. Richenbacher, R. Oren, and V. K. Somers, "Evidence for a central origin of the low-frequency oscillation in RR-interval variability," Circulation, vol. 98, pp. 556-561, Aug. 1998.
[9] R. W. DeBoer, J. W. Karemaker, and J. Stracke, "Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model," Am. J. Physiol. Heart Circ. Physiol., vol. 253, pp. 680-689, Sep. 1987.
[10] J. W. Hamner, R. J. Morin, J. L. Rudolph, and J. A. Taylor, "Inconsistent link between low-frequency oscillations: R-R interval responses to augmented Mayer waves," J. Appl. Physiol., vol. 90, pp. 1559-1564, Apr. 2001.
[11] L. Faes, A. Porta, and G. Nollo, "Mutual nonlinear prediction as a tool to evaluate coupling strength and directionality in bivariate time series: Comparison among different strategies based on k nearest neighbors," Phys. Rev. E, vol. 78, 026201, Aug. 2008.
[12] T. Kreuz, F. Mormann, R. G. Andrzejak, A. Kraskov, K. Lehnertz, and P. Grassberger, "Measuring synchronization in coupled model systems: A comparison of different approaches," Physica D, vol. 225, pp. 29-42, Jan. 2007.
[13] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J. Kurths, "Phase synchronization of chaotic oscillators by external driving," Physica D, vol. 104, pp. 219-238, June 1997.
[14] T. Schreiber and A. Schmitz, "Surrogate time series," Physica D, vol. 142, pp. 346-382, Aug. 2000.