10010829

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

[1] G. H. Tattersall and P. F. G. Banfill, The rheology of fresh concrete, vol. 759. Pitman London, 1983.

[2] C. Hu and F. de Larrard, “The rheology of fresh high-performance concrete,” Cem. Concr. Res., vol. 26, no. 2, pp. 283–294, 1996.

[3] Z. Tan, S. A. Bernal, and J. L. Provis, “Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes,” Mater. Struct., vol. 50, no. 6, p. 235, 2017.

[4] N. Roussel, Ecoulement et mise en œuvre des bétons. Laboratoire Central des Ponts et Chaussées (LCPC), Paris, 2008.

[5] R. J. Flatt and P. Bowen, “Yodel: a yield stress model for suspensions,” J. Am. Ceram. Soc., vol. 89, no. 4, pp. 1244–1256, 2006.

[6] J. H. Lee, J. H. Kim, and J. Y. Yoon, “Prediction of the yield stress of concrete considering the thickness of excess paste layer,” Constr. Build. Mater., vol. 173, pp. 411–418, 2018.

[7] A. Einstein, “Eine neue bestimmung der moleküldimensionen,” Ann. Phys., vol. 324, no. 2, pp. 289–306, 1906.

[8] I. M. Krieger and T. J. Dougherty, “A mechanism for non-Newtonian flow in suspensions of rigid spheres,” Trans. Soc. Rheol., vol. 3, no. 1, pp. 137–152, 1959.

[9] X. Chateau, G. Ovarlez, and K. L. Trung, “Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids,” J. Rheol., vol. 52, no. 2, pp. 489–506, 2008.

[10] F. Mahaut, X. Chateau, P. Coussot, and G. Ovarlez, “Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids,” J. Rheol., vol. 52, no. 1, pp. 287–313, 2008.

[11] H. Hafid, “Influence des paramètres morphologiques des granulats sur le comportement rhéologique des bétons frais: étude sur systèmes modèles,” PhD thesis, Paris-Est University, 2012.

[12] K. D. Kabagire, A. Yahia, and M. Chekired, “Toward the prediction of rheological properties of self-consolidating concrete as diphasic material,” Constr. Build. Mater., vol. 195, pp. 600–612, 2019.

[13] V. Ledee, F. de Larrard, T. Sedran, and F. Brochu, “Essai de compacité des fractions granulaires à la table à secousses: Mode opératoire,” Tech. Méthodes Lab. Ponts Chaussées Méthode, 2004.

[14] M. Rahman, J. Wiklund, R. Kotzé, and U. H\a akansson, “Yield stress of cement grouts,” Tunn. Undergr. Space Technol., vol. 61, pp. 50–60, 2017.

[15] K. Vance, G. Sant, and N. Neithalath, “The rheology of cementitious suspensions: a closer look at experimental parameters and property determination using common rheological models,” Cem. Concr. Compos., vol. 59, pp. 38–48, 2015.

[16] M. Bala, R. Zentar, and P. Boustingorry, “Parameter analysis of the compressible packing model for Concrete application,” presented at the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, 2018, pp. 1–8.

[17] M. Bala, R. Zentar, and P. Boustingorry, “Etude d’impact de la forme des granulats sur les paramètres du modèle d’empilement compressible,” presented at the 36èmes Rencontres Universitaires de Génie Civil de l’AUGC, Saint-Etienne, France, 2018, pp. 1–4.

[18] T. Sedran, F. De Larrard, and L. Le Guen, “Détermination de la compacité des ciments et additions minérales à la sonde de Vicat,” Bull. Lab. Ponts Chaussées, no. 270–271, p. pp–155, 2007.

[19] P. F. G. Banfill, “Rheology of fresh cement and concrete,” Rheol. Rev., vol. 2006, p. 61, 2006.

[20] A. W. Saak, H. M. Jennings, and S. P. Shah, “A generalized approach for the determination of yield stress by slump and slump flow,” Cem. Concr. Res., vol. 34, no. 3, pp. 363–371, 2004.

[21] A. Sadok, R. Zentar, and N.-E. Abriak, “Genetic programming for granular compactness modelling,” Eur. J. Environ. Civ. Eng., vol. 20, no. 10, pp. 1249-1261, 2016.