10001789

[1] P. Berge, Y. Pomeau, and C. Vidal, Order within Chaos, John Wiley and Sons, New York, 1984.

[2] C. M. Kim, G. Yim, J. Ryu, and Y. Park, “Characteristic relations of type III intermittency in an electronic circuit,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5317–5320, June 1998.

[3] J. L. Perez Velazquez and et al., “Type III intermittency in human partial epilepsy,” European Journal of Neuroscience, vol. 11, pp. 2571–2576, 1999.

[4] I. Z. Kiss and J. L. Hudson, “Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator,” Phys. Rev. E, vol. 64, no. 4, pp. 046215, 2001.

[5] S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, “Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems,” Phys. Rev. Lett., vol. 89, no. 19, pp. 194101, 2002.

[6] J. L. Cabrera and J. Milnor, “On-off intermittency in a human balancing task,” Phys. Rev. Lett., vol. 89, no. 15, pp. 158702, 2002.

[7] A. E. Hramov, A. A. Koronovskii, I. S. Midzyanovskaya, E. Sitnikova, and C. M. Rijn, “On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy,” Chaos, vol. 16, pp. 043111, 2006.

[8] E. Sitnikova, A. E. Hramov, V. V. Grubov, A. A. Ovchinnkov, and A. A. Koronovsky, “Onoff intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy,” Brain Research, vol. 1436, pp. 147–156, 2012.

[9] M. Dubois, M. Rubio, and P. Berg´e, “Experimental evidence of intermiasttencies associated with a subharmonic bifurcation,” Phys. Rev. Lett., vol. 51, pp. 1446–1449, 1983.

[10] J. F. Heagy, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E, vol. 49, no. 2, pp. 1140–1150, 1994.

[11] A. S. Pikovsky, G. V. Osipov, M. G. Rosenblum, M. Zaks, and J. Kurths, “Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization,” Phys. Rev. Lett., vol. 79, no. 1, pp. 47–50, 1997.

[12] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and S. Boccaletti, “Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization,” Phys. Rev. Lett., vol. 97, pp. 114101, 2006.

[13] A. E. Hramov, A. A. Koronovskii, O. I. Moskalenko, M. O. Zhuravlev, V. I. Ponomarenko, and M. D. Prokhorov, “Intermittency of intermittencies,” CHAOS, vol. 23, no. 3, pp. 033129, 2013.

[14] N. N. Nikitin, S. V. Pervachev, and V. D. Razevig, “About solution of stochastic diferential equations of follow-up systems,” Automation and telemechanics, vol. 4, pp. 133–137, 1975, in Russian.

[15] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag synchronization in coupled chaotic oscillators,” Phys. Rev. Lett., vol. 78, no. 22, pp. 4193–4196, 1997.

[16] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, “Two types of phase synchronization destruction,” Phys. Rev. E, vol. 75, no. 3, pp. 036205, 2007.

[17] B. B. Godfrey, “Oscillatory nonlinear electron flow in Pierce diode,” Phys. Fluids, vol. 30, pp. 1553, 1987.

[18] H. Matsumoto, H. Yokoyama, and D. Summers, “Computer simulations of the chaotic dynamics of the Pierce beam–plasma system,” Phys. Plasmas, vol. 3, no. 1, pp. 177, 1996.

[19] R. A. Filatov, A. E. Hramov, and A. A. Koronovskii, “Chaotic synchronization in coupled spatially extended beam-plasma systems,” Phys. Lett. A, vol. 358, pp. 301–308, 2006.

[20] P. J. Rouch, Computational fluid dynamics. Hermosa publishers, Albuquerque, 1976.

[21] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, and S. Boccaletti, “Generalized synchronization in mutually coupled oscillators and complex networks,” Phys. Rev. E, vol. 86, pp. 036216, 2012.

[22] A.E. Hramov, A.A. Koronovskii, “Detecting unstable periodic spatiotemporal states of spatial extended chaotic systems”, Europhysics Letters, vol. 80, pp. 10001, 2007.

[23] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, M. O. Zhuravlev, Yu. I. Levin, “Cooperation of deterministic and stochastic mechanisms resulting in the intermittent behavior”, Chaos, Solitons & Fractals, vol. 68, pp. 58-64, 2014.