International Science Index


10001083

Metal(loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland

Abstract:

The work allowed gaining knowledge about redox and speciation changes of As, Cr and Sb ionic forms in Klodnica River water. This kind of studies never has been conducted in this region of Poland. In study optimized and validated previously HPLC-ICP-MS methods for determination of As, Sb and Cr was used. Separation step was done using high-performance liquid chromatograph equipped with ion-exchange column followed by ICP-MS spectrometer detector. Preliminary studies included determination of the total concentration of As, Sb and Cr, pH, Eh, temperature and conductivity of the water samples. The study was conducted monthly from March to August 2014, at six points on the Klodnica River. The results indicate that exceeded at acceptable concentration of total Cr and Sb was observed in Klodnica River and we should qualify Klodnica River waters below the second purity class. In Klodnica River waters dominates oxidized antimony and arsenic forms, as well as the two forms of chromium Cr(VI) and Cr(III). Studies have also shown the methyl derivative of arsenic's presence.

References:
[1] M. Jabłońska-Czapla. S. Szopa. K. Grygoyć. A. Łyko. R. Michalski. „Development and validation of HPLC-ICP-MS method for the determination inorganic Cr. As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study”. Talanta. 120. (2014). 475-483.
[2] R. Michalski. M. Jabłońska-Czapla. A. Łyko. S. Szopa.“Hyphenated methods for speciation analysis”. Encyclopedia of Analytical Chemistry. John Wiley & Sons. Ltd. 2013.
[3] R. Michalski. M. Jabłońska. S. Szopa S. (2013) “Role and Importance of Hyphenated Techniques in Speciation Analysis”(in) Speciation Studies in Soil. Sediment and Environmental Samples. Eds. SezginBakirdere. Science Publishers/CRC Press/Taylor&Francis Group.
[4] R. Michalski. M. Jabłońska. S. Szopa. A. Łyko. “Application of Ion Chromatography with ICP-MS or MS Detection to the Determination of Selected Halides and Metal/Metalloids Species”. Critical Reviews in Analytical Chemistry. 41: 2. (2011). 133-150.
[5] P. Smichowski. “Antimony in the environment as a global pollutant: A review on analytical methodologies for its determination in atmospheric”. Talanta. 75. pp. 2-14. 2008.
[6] M. Filella. N. Belzile. Y. W. Chen. “Antimony in the environment: a review focused on natural waters: I. Occurrence”. Earth-Science Reviews. 57. pp. 125-176. 2002.
[7] S. Marcellino. H. Attar.D. Lievremont. M.C. Lett. F. Barbier. F. Lagarde. “Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples”. AnalyticaChimicaActa. 629. pp. 73-83. 2008.
[8] P. Niedzielski. M. Siepak. J. Siepak. „Występowanie i zawartości arsenu. antymonu i selenu w wodach i innych elementach środowiska”.RocznikOchronyŚrodowiska. 1. pp. 317-341. 2000.
[9] S. Marcellino. H. Attar.D. Lievremont. M.C. Lett. F. Barbier. F. Lagarde. “Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples”. AnalyticaChimicaActa. 629. pp. 73-83. 2008.
[10] A. Leonard. G. B. Gerber. “Mutagenicity, carcinogenicity and teratogenicity of antimony compounds”. Mutation Research: Reviews in Genetic Toxicology. 366. pp. 1-8. 1996.
[11] S. Garboś. E. Bulska. A. Hulanicki. Z. Fijalek. K. Sołtyk. “Determination of total antimony and antimony(V) by inductively coupled plasma mass spectrometry after selective separation of antimony(III) by solvent extraction with N-benzoyl-Nphenylhydroxylamine”. SpectrochimicaActa B. 55.pp. 795-802. 2000.
[12] C. H. Selene. J. Chou. C. T. De Rosa. “Case studies – Arsenic”. International Journal of Hygiene and Environmental Health.206 . pp. 381-386. 2003.
[13] R. Cornelis. H. Crews. J. Caruso. K.G. Heumann. Handbook of Elemental Speciation II: Species in the Environment. Food. Medicine & Occupational Health. John Wiley & Sons. Ltd. New York. 2005.
[14] W. Semczuk. Toksykologia. Państwowy Zakład Wydawnictw Lekarskich. Warszawa. 1990.
[15] Nocoń W.: Zawartość metali cięŜkich w osadach dennych rzeki Kłodnicy. Journal of Elementology. 4. (2006). 457–466.
[16] Regulation of the Minister of Environmental on 9october 2011.on the classification status of surface water and environmental quality standards for priority substances. No. 257. pos. 1545th.
[17] R. Mason. “Trace Metals in Aquatic Systems”. Wiley-Blackwell. 2013. ch. 2 and 7.
[18] A. N. Kaizer. S. A.Osakwe. Physicochemical Characteristics and Heavy Metal Levels in Water Samples from Five River Systems in Delta State. Nigeria. Journal of Applied Sciences and Environmental Management. 14(1) pp. 83 – 87. 2010.
[19] M. M. El Bouraie. A. A. El Barbary. M. M. Yeia. E. A. Motawea. “Heavy metal concentrations in surface river water and bed sediments at Nile Delta in Egipt”. Suoseurai Finnish Peatlend Society. Helsinki 2010. Suo 61 (1). pp. 1-12.
[20] N. Nocoń. M. Kostecki. J. Kozłowski. “Hydrochemical characteristic of Klodnica River”. OchronaŚrodowiska. 2006. 28. 3. pp. 39-44 (in Polish).
[21] E. Adamiec. E. Helios-Rybicka.“Distribution of pollutants in the Odra River system. Part IV.Heavy metal distribution in water of the upper and middle Odra River. 1998-2000”. Polish Journal of Environmental Studies. 2002. 11. 6. pp.669-673.
[22] M. Jablonska-Czapla. “Arsenic, antimony and chromium speciation using HPLC-ICP-MS technique in selected rivers ecosystems of Upper Silesia. Poland-validation of methodology”. in 17-20 June. 2014. 38th International Symposium on Environmental Analytical Chemistry. Lausanne. Switzerland. pp.62.