Open Science Research Excellence

Sizhong Zhou

Publications

6

Publications

6
3345
On Fractional (k,m)-Deleted Graphs with Constrains Conditions
Abstract:

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

Keywords:
Graph, degree condition, fractional k-factor, fractional (k,m)-deleted graph.
5
3455
[a, b]-Factors Excluding Some Specified Edges In Graphs
Abstract:

Let G be a graph of order n, and let a, b and m be positive integers with 1 ≤ a<b. An [a, b]-factor of G is defined as a spanning subgraph F of G such that a ≤ dF (x) ≤ b for each x ∈ V (G). In this paper, it is proved that if n ≥ (a+b−1+√(a+b+1)m−2)2−1 b and δ(G) > n + a + b − 2 √bn+ 1, then for any subgraph H of G with m edges, G has an [a, b]-factor F such that E(H)∩ E(F) = ∅. This result is an extension of thatof Egawa [2].

Keywords:
graph, minimum degree, [a, b]-factor.
4
4161
A Neighborhood Condition for Fractional k-deleted Graphs
Abstract:

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

Keywords:
Graph, minimum degree, neighborhood union, fractional k-factor, fractional k-deleted graph.
3
8232
Hamiltonian Factors in Hamiltonian Graphs
Abstract:
Let G be a Hamiltonian graph. A factor F of G is called a Hamiltonian factor if F contains a Hamiltonian cycle. In this paper, two sufficient conditions are given, which are two neighborhood conditions for a Hamiltonian graph G to have a Hamiltonian factor.
Keywords:
graph, neighborhood, factor, Hamiltonian factor.
2
10536
A Sufficient Condition for Graphs to Have Hamiltonian [a, b]-Factors
Authors:
Abstract:

Let a and b be nonnegative integers with 2 ≤ a < b, and let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2) b−2 . An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1 a+b−3 for every nonempty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4 a+b−3 .

Keywords:
graph, minimum degree, neighborhood, [a, b]-factor, Hamiltonian [a, b]-factor.
1
15704
Notes on Fractional k-Covered Graphs
Abstract:
A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{|NG(X)| |X| : ├ÿ = X Ôèå V (G),NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5 3 .
Keywords:
graph, binding number, fractional k-factor, fractional k-covered graph.